Background: While deep brain stimulation (DBS) targeting the ventral intermediate nucleus (VIM) of thalamus or posterior subthalamic area (PSA) can suppress forms of action tremor in people with Essential Tremor, previous studies have suggested postural tremor may respond more robustly than kinetic tremor to DBS.
Objectives: In this study, we aimed to more precisely quantify the (1) onset/offset dynamics and (2) steady-state effects of VIM/PSA-DBS on postural and kinetic tremor.
Methods: Tremor data from wireless inertial measurement units were collected from 11 participants with ET (20 unilaterally assessed DBS leads).
Electrically evoked compound action potentials (ECAPs) generated in the subthalamic nucleus (STN) contain features that may be useful for titrating deep brain stimulation (DBS) therapy for Parkinson's disease. Delivering a strong therapeutic effect with DBS therapies, however, relies on selectively targeting neural pathways to avoid inducing side effects. In this study, we investigated the spatiotemporal features of ECAPs in and around the STN across parameter sweeps of stimulation current amplitude, pulse width, and electrode configuration, and used a linear classifier of ECAP responses to predict electrode location.
View Article and Find Full Text PDFObjective: Gait dysfunction is one of the most difficult motor signs to treat in patients with Parkinson's disease (PD). Understanding its pathophysiology and developing more effective therapies for parkinsonian gait dysfunction will require preclinical studies that can quantitatively and objectively assess the spatial and temporal features of gait.
Design: We developed a novel system for measuring volitional, naturalistic gait patterns in non-human primates, and then applied the approach to characterize the progression of parkinsonian gait dysfunction across a sequence of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatments that allowed for intrasubject comparisons across mild, moderate, and severe stages.