When human umbilical cord blood cells (HUCBCs) are administered intravenously after a middle cerebral artery occlusion, they reliably produce behavioral and anatomical recovery, and protect neural tissue from progressive change. However, our results indicate that the cells do not exert their effects by engraftment in the peri-infarct region, even though they migrate to the site of injury. The objective of the present study was to determine if the cells induce recovery by decreasing inflammation.
View Article and Find Full Text PDFAnimal models of cerebral infarction are crucial to understanding the mechanisms of neuronal survival following ischemic brain injury and to the development of therapeutic interventions for victims of all types of stroke. Rodents have been used extensively in such research. One rodent model of stroke utilizes either permanent or temporary occlusion of the middle cerebral artery (MCAO) to produce ischemia.
View Article and Find Full Text PDFActivation of several immediate early genes (IEGs) is crucial for long-term memory formation in vivo. In vitro methods of inducing these genes have not been investigated extensively. Here we present data demonstrating that application of the neurotrophin, nerve growth factor (NGF), to both rat primary neuronal cultures and differentiated mouse neuroblastoma 2A (N2A) cultures reliably induces expression of several IEGs, including Zif268, Nur77 and Arc, each of which have been linked to memory consolidation.
View Article and Find Full Text PDF