Publications by authors named "Dirr H"

Chloride intracellular channel proteins (CLICs) display ubiquitous expression, with each member exhibiting specific subcellular localisation. While all CLICs, except CLIC3, exhibit a highly conserved putative nuclear localisation sequence (NLS), only CLIC1, CLIC3 and CLIC4 exist within the nucleus. The CLIC4 NLS, 199-KVVAKKYR-206, appears crucial for nuclear entry and interacts with mouse nuclear import mediator Impα isoform 1, omitting the IBB domain (mImpα1ΔIBB).

View Article and Find Full Text PDF

Schistosoma japonicum glutathione transferase (Sj26GST), an enzyme central to detoxification of electrophilic compounds in the parasite, is upregulated in response to drug treatment. Therefore, Sj26GST may serve as a potential therapeutic target for the treatment of schistosomiasis. Herewith, we describe the structural basis of inhibition of Sj26GST by ellagic acid (EA).

View Article and Find Full Text PDF

An exoglucanase (Exg-D) from the glycoside hydrolase family 5 subfamily 38 (GH5_38) was heterologously expressed and structurally and biochemically characterised at a molecular level for its application in alkyl glycoside synthesis. The purified Exg-D existed in both dimeric and monomeric forms in solution, which showed highest activity on mixed-linked β-glucan (88.0 and 86.

View Article and Find Full Text PDF

Background: Protease inhibitors form the main component of second-line antiretroviral treatment in South Africa. Despite their efficacy, mutations arising within the HIV-1 gag and protease coding regions contribute to the development of resistance against this class of drug. In this paper we investigate a South African HIV-1 subtype C Gag-protease that contains a hinge region mutation and insertion (N37T↑V).

View Article and Find Full Text PDF

HIV protease is essential for processing the Gag polyprotein to produce infectious virions and is a major target in antiretroviral therapy. We have identified an unusual HIV-1 subtype C variant that contains insertions of leucine and asparagine (L38↑N↑L) in the hinge region of protease at position 38. This was isolated from a protease inhibitor naïve infant.

View Article and Find Full Text PDF

Rabies is an ancient and neglected zoonotic disease caused by the rabies virus, a neurotropic RNA virus that belongs to the Rhabdoviridae family, genus Lyssavirus. It remains an important public health problem as there are cost and health concerns imposed by the current human post exposure prophylaxis therapy. The use of monoclonal antibodies (mAbs) is therefore an attractive alternative.

View Article and Find Full Text PDF

Antibodies that bind residue K169 in the V2 region of the HIV-1 envelope correlated with reduced risk of infection in the RV144 vaccine trial but were restricted to two ED-motif-encoding light chain genes. Here, we identify an HIV-infected donor with high-titer V2 peptide-binding antibodies and isolate two antibody lineages (CAP228-16H/19F and CAP228-3D) that mediate potent antibody-dependent cell-mediated cytotoxicity (ADCC). Both lineages use the IGHV5-51 heavy chain germline gene, similar to the RV144 antibody CH58, but one lineage (CAP228-16H/19F) uses a light chain without the ED motif.

View Article and Find Full Text PDF

FOXP2 is a transcriptional repressor involved in development of the human brain and is the first gene product to be linked to the evolution of human speech. FOXP2 belongs to the FOX superfamily of proteins that share a common winged helix DNA binding domain - the forkhead domain. A divalent cation (Mg or Ca) has been identified bound to a group of highly conserved residues in a number of FOX forkhead domain crystal structures.

View Article and Find Full Text PDF

Plasmodium falciparum, the main agent of malaria expresses six members of the heat shock protein 70 (Hsp70) family. Hsp70s serve as protein folding facilitators in the cell. Amongst the six Hsp70 species that P.

View Article and Find Full Text PDF

Forkhead box (FOX) proteins are a ubiquitously expressed family of transcription factors that regulate the development and differentiation of a wide range of tissues in animals. The FOXP subfamily members are the only known FOX proteins capable of forming domain-swapped forkhead domain (FHD) dimers. This is proposed to be due to an evolutionary mutation (P539A) that lies in the FHD hinge loop, a key region thought to fine-tune DNA sequence specificity in the FOX transcription factors.

View Article and Find Full Text PDF

In recent years, various strategies have been used to overexpress and purify HIV-1 protease because it is an essential drug target in anti-retroviral therapy. Obtaining sufficient quantities of the enzyme, however, remains challenging. Overexpression of large quantities is prevented due to the enzyme's autolytic nature and its inherent cytotoxicity in Escherichia coli cells.

View Article and Find Full Text PDF

FOXP2 is a transcription factor expressed in multiple tissues during embryonic development. FOXP2 regulates transcription by binding to DNA at its DNA binding domain, the forkhead domain (FHD) through the recognition helix. Ser557 is a residue located within the recognition helix that has the potential to become phosphorylated posttranslationally.

View Article and Find Full Text PDF

HIV-1 protease is an important antiretroviral drug target due to its key role in viral maturation. Computational models have been successfully used in the past to understand the dynamics of HIV-1 protease variants. We performed molecular dynamics simulations and induced fit docking on a wild-type South African HIV-1 subtype C protease and an N37T↑V hinge region variant.

View Article and Find Full Text PDF

The β-subunit of the human eukaryotic elongation factor 1 complex (heEF1β) plays a central role in the elongation step in eukaryotic protein biosynthesis, which essentially involves interaction with the α- and γ-subunits (eEF1γ). To biophysically characterize heEF1β, we constructed 3 Escherichia coli expression vector systems for recombinant expression of the full length (FL-heEF1β), N-terminus (NT-heEF1β), and the C-terminus (CT-heEF1β) regions of the protein. Our results suggest that heEF1β is predominantly alpha-helical and possesses an accessible hydrophobic cavity in the CT-heEF1β.

View Article and Find Full Text PDF

Heat shock proteins (Hsps), amongst them, Hsp70 and Hsp90 families, serve mainly as facilitators of protein folding (molecular chaperones) of the cell. The Hsp70 family of proteins represents one of the most important molecular chaperones in the cell. , the main agent of malaria, expresses six Hsp70 isoforms.

View Article and Find Full Text PDF

Heat shock protein 70 (Hsp70) is a molecular chaperone that plays an important role in cellular proteostasis. Hsp70s are also implicated in the survival and pathogenicity of malaria parasites. The main agent of malaria, Plasmodium falciparum, expresses six Hsp70s.

View Article and Find Full Text PDF

Glutathione S-transferase A3-3 is the most catalytically efficient steroid isomerase enzyme known in humans, transforming Δ-androstene-3-17-dione into Δ-androstene-3-17-dione. GSTA3-3 catalyzes this reaction with ten-fold greater efficiency than GSTA1-1, its closest competitor in the Alpha class of GSTs. In order to examine the differences between Alpha class GSTs and to better elucidate the mechanism of GSTA3-3 the roles of Tyr9 and Arg15 were examined.

View Article and Find Full Text PDF

FOXP2 is a member of the P subfamily of FOX transcription factors, the DNA-binding domain of which is the winged helix forkhead domain (FHD). In this work we show that the FOXP2 FHD is able to bind to various DNA sequences, including a novel sequence identified in this work, with different affinities and rates as detected using surface plasmon resonance. Combining the experimental work with molecular docking, we show that high-affinity sequences remain bound to the protein for longer, form a greater number of interactions with the protein and induce a greater structural change in the protein than low-affinity sequences.

View Article and Find Full Text PDF

The energetics of ligand binding to human eukaryotic elongation factor 1 gamma (heEF1γ) was investigated using reduced glutathione (GSH), oxidised glutathione (GSSG), glutathione sulfonate and S-hexylglutathione as ligands. The experiments were conducted using isothermal titration calorimetry, and the findings were supported using computational studies. The data show that the binding of these ligands to heEF1γ is enthalpically favourable and entropically driven (except for the binding of GSSG).

View Article and Find Full Text PDF

Rabies is an acute viral encephalomyelitis in warm-blooded vertebrates, caused by viruses belonging to Rhabdovirus family and genus Lyssavirus. Although rabies is categorised as a neglected disease, the rabies virus (RABV) is the most studied amongst Lyssaviruses which show nearly identical infection patterns. In efforts to improving post-exposure prophylaxis, several anti-rabies monoclonal antibodies (mAbs) targeting the glycoprotein (G protein) sites I, II, III and G5 have been characterized.

View Article and Find Full Text PDF

The role of molecular chaperones, among them heat shock proteins (Hsps), in the development of malaria parasites has been well documented. Hsp70s are molecular chaperones that facilitate protein folding. Hsp70 proteins are composed of an N-terminal nucleotide binding domain (NBD), which confers them with ATPase activity and a C-terminal substrate binding domain (SBD).

View Article and Find Full Text PDF

Six Hsp70-like genes are represented on the genome of Plasmodium falciparum. Of these two occur in the cytosol: P. falciparum Hsp70-z (PfHsp70-z) and PfHsp70-1.

View Article and Find Full Text PDF

The forkhead box (FOX) proteins are a family of transcription factors that interact with DNA via a winged helix motif that forms part of the forkhead domain. The FOXP (FOXP1-4) subfamily is unique in the family in that the forkhead domains of these proteins are able to dimerise via domain swapping. In this event, structural elements are exchanged via extension of the hinge loop region.

View Article and Find Full Text PDF

Since its identification, HIV has continued to have a detrimental impact on the lives of millions of people throughout the world. The protease of HIV is a major target in antiviral treatment. The South African HIV-1 subtype C (C-SA) protease displays weaker binding affinity for some clinically approved protease inhibitors in comparison with the HIV-1 subtype B protease.

View Article and Find Full Text PDF

The seemingly simple proton abstraction reactions underpin many chemical transformations, including isomerization reactions, and are thus of immense biological significance. Despite the energetic cost, enzyme-catalyzed proton abstraction reactions show remarkable rate enhancements. The pathways leading to these accelerated rates are numerous and on occasion partly enigmatic.

View Article and Find Full Text PDF