Publications by authors named "Dirk-Jan Reijngoud"

The mitochondrial fatty acid β-oxidation (mFAO) is important for producing ATP under conditions of energetic stress, such as fasting and cold exposure. The regulation of this pathway is dependent on the kinetic properties of the enzymes involved. To better understand pathway behaviour, accurate enzyme kinetics is required.

View Article and Find Full Text PDF

Galacto-oligosaccharides (GOS) and fructo-oligosaccharides (FOS) are food ingredients that improve human health, but their degradation throughout the human small intestine is not well understood. We studied the breakdown kinetics of FOS and GOS in the intestines of seven healthy Dutch adults. Subjects were equipped with a catheter in the distal ileum or proximal colon and consumed 5 g of chicory-derived FOS (degree of polymerization (DP) DP2-10), and 5 g of GOS (DP2-6).

View Article and Find Full Text PDF

Reprogrammed metabolism is a hallmark of cancer, but notoriously difficult to target due to metabolic plasticity, especially in response to single metabolic interventions. Combining mTOR inhibitor everolimus and mitochondrial complex 1 inhibitor metformin results in metabolic synergy in in vitro models of triple-negative breast cancer. Here, we investigated whether the effect of this drug combination on tumor size is reflected in changes in tumor metabolism using [U-C]glucose labeling in an MDA-MB-231 triple negative breast cancer xenograft model.

View Article and Find Full Text PDF

Consumption of fructo- (FOS) and galacto-oligosaccharides (GOS) has health benefits which have been linked in part to short-chain fatty acids (SCFA) production by the gut microbiota. However, detailed knowledge of this process in the human intestine is lacking. We aimed to determine the acute fermentation kinetics of a FOS:GOS mixture in healthy males using a naso-intestinal catheter for sampling directly in the ileum or colon.

View Article and Find Full Text PDF

Unlabelled: Diet modulates the development of insulin resistance during aging. This includes tissue-specific alterations in insulin signaling and mitochondrial function, which ultimately affect glucose homeostasis. Exercise stimulates glucose clearance and mitochondrial lipid oxidation and also enhances insulin sensitivity (IS).

View Article and Find Full Text PDF

Diet modulates the development of insulin resistance during aging. This includes tissue-specific alterations in insulin signaling and mitochondrial function, which ultimately affect glucose homeostasis. Exercise stimulates glucose clearance, mitochondrial lipid oxidation and enhances insulin sensitivity.

View Article and Find Full Text PDF

Several fatty acids, in particular saturated fatty acids like palmitic acid, cause lipotoxicity in the context of non-alcoholic fatty liver disease . Unsaturated fatty acids (e.g.

View Article and Find Full Text PDF

Skeletal muscle insulin resistance is a key pathophysiological process that precedes the development of type 2 diabetes. Whereas an overload of long-chain fatty acids can induce muscle insulin resistance, butyrate, a short-chain fatty acid (SCFA) produced from dietary fibre fermentation, prevents it. This preventive role of butyrate has been attributed to histone deacetylase (HDAC)-mediated transcription regulation and activation of mitochondrial fatty-acid oxidation.

View Article and Find Full Text PDF

Hypoglycemia results from an imbalance between glucose entering the blood compartment and glucose demand, caused by a defect in the mechanisms regulating postprandial glucose homeostasis. Hypoglycemia represents one of the most common metabolic emergencies in childhood, potentially leading to serious neurologic sequelae, including death. Therefore, appropriate investigation of its specific etiology is paramount to provide adequate diagnosis, specific therapy and prevent its recurrence.

View Article and Find Full Text PDF

Metabolic-associated fatty liver disease (MAFLD) starts with hepatic triglyceride accumulation (steatosis) and can progress to more severe stages such as non-alcoholic steatohepatitis (NASH) and even cirrhosis. Butyrate, and butyrate-producing bacteria, have been suggested to reduce liver steatosis directly and systemically by increasing liver β-oxidation. This study aimed to examine the influence of butyrate directly on the liver in an ex vivo induced MAFLD model.

View Article and Find Full Text PDF

In this study we demonstrated through analytic considerations and numerical studies that the mitochondrial fatty-acid β-oxidation can exhibit bistable-hysteresis behavior. In an experimentally validated computational model we identified a specific region in the parameter space in which two distinct stable and one unstable steady state could be attained with different fluxes. The two stable states were referred to as low-flux (disease) and high-flux (healthy) state.

View Article and Find Full Text PDF

Background: The skeletal muscle plays a central role in glucose homeostasis through the uptake of glucose from the extracellular medium in response to insulin. A number of factors are known to disrupt the normal response to insulin leading to the emergence of insulin resistance (IR). Advanced age and a high-fat diet are factors that increase the susceptibility to IR, with lipid accumulation in the skeletal muscle being a key driver of this phenomenon.

View Article and Find Full Text PDF

C-isotope tracing is a frequently employed approach to study metabolic pathway activity. When combined with the subsequent quantification of absolute metabolite concentrations, this enables detailed characterization of the metabolome in biological specimens and facilitates computational time-resolved flux quantification. Classically, a C-isotopically labeled sample is required to quantify C-isotope enrichments and a second unlabeled sample for the quantification of metabolite concentrations.

View Article and Find Full Text PDF

Detailed knowledge on the fate of dietary components inside the human intestinal tract is lacking. Access to this inner world of digestion is now possible through novel human gastrointestinal sampling capsules. Due to the novelty of such devices, no methodology has been published to stabilise and analyse the resulting samples.

View Article and Find Full Text PDF

Prevention of hypertriglyceridemia is one of the biomedical targets in Glycogen Storage Disease type Ia (GSD Ia) patients, yet it is unclear how hypoglycemia links to plasma triglyceride (TG) levels. We analyzed whole-body TG metabolism in normoglycemic (fed) and hypoglycemic (fasted) hepatocyte-specific glucose-6-phosphatase deficient (L-G6pc ) mice. De novo fatty acid synthesis contributed substantially to hepatic TG accumulation in normoglycemic L-G6pc mice.

View Article and Find Full Text PDF

D,L-3-hydroxybutyrate (D,L-3-HB, a ketone body) treatment has been described in several inborn errors of metabolism, including multiple acyl-CoA dehydrogenase deficiency (MADD; glutaric aciduria type II). We aimed to improve the understanding of enantiomer-specific pharmacokinetics of D,L-3-HB. Using UPLC-MS/MS, we analyzed D-3-HB and L-3-HB concentrations in blood samples from three MADD patients, and blood and tissue samples from healthy rats, upon D,L-3-HB salt administration (patients: 736-1123 mg/kg/day; rats: 1579-6317 mg/kg/day of salt-free D,L-3-HB).

View Article and Find Full Text PDF

Mouse models are frequently used to study mechanisms of human diseases. Recently, we observed a spontaneous bimodal variation in liver weight in C57BL/6JOlaHsd mice fed a semisynthetic diet. We now characterized the spontaneous variation in liver weight and its relationship with parameters of hepatic lipid and bile acid (BA) metabolism.

View Article and Find Full Text PDF

During fasting, mitochondrial fatty-acid β-oxidation (mFAO) is essential for the generation of glucose by the liver. Children with a loss-of-function deficiency in the mFAO enzyme medium-chain acyl-Coenzyme A dehydrogenase (MCAD) are at serious risk of life-threatening low blood glucose levels during fasting in combination with intercurrent disease. However, a subset of these children remains asymptomatic throughout life.

View Article and Find Full Text PDF

Diet and physical activity are thought to affect sustainable metabolic health and survival. To improve understanding, we studied survival of mice feeding a low-fat (LF) or high-saturated fat/high sugar (HFS) diet, each with or without free running wheel (RW) access. Additionally several endocrine and metabolic health indices were assessed at 6, 12, 18 and 24 months of age.

View Article and Find Full Text PDF

This study aimed to establish the number of expression-based molecular subclasses in cutaneous melanoma, identify their dominant biological pathways and evaluate their clinical relevance. To this end, consensus clustering was performed separately on two independent datasets (n = 405 and n = 473) composed of publicly available cutaneous melanoma expression profiles from previous studies. Four expression-based molecular subclasses were identified and labelled 'Oxidative phosphorylation', 'Oestrogen response/p53-pathway', 'Immune' and 'Cell cycle', based on their dominantly expressed biological pathways determined by gene set enrichment analysis.

View Article and Find Full Text PDF

Lipidomics is a rapidly developing field in modern biomedical research. While LC-MS systems are able to detect most of the known lipid classes in a biological matrix, there is no single technique able to extract all of them simultaneously. In comparison with two-phase extractions, one-phase extraction systems are of particular interest, since they decrease the complexity of the experimental procedure.

View Article and Find Full Text PDF

Loss of mitochondrial respiratory flux is a hallmark of skeletal muscle aging, contributing to a progressive decline of muscle strength. Endurance exercise alleviates the decrease in respiratory flux, both in humans and in rodents. Here, we dissect the underlying mechanism of mitochondrial flux decline by integrated analysis of the molecular network.

View Article and Find Full Text PDF

Unlabelled: It is a long-standing enigma how glycogen storage disease (GSD) type I patients retain a limited capacity for endogenous glucose production despite the loss of glucose-6-phosphatase activity. Insight into the source of residual endogenous glucose production is of clinical importance given the risk of sudden death in these patients, but so far contradictory mechanisms have been proposed. We investigated glucose-6-phosphatase-independent endogenous glucose production in hepatocytes isolated from a liver-specific GSD Ia mouse model (L-G6pc mice) and performed real-time analysis of hepatic glucose fluxes and glycogen metabolism in L-G6pc mice using state-of-the-art stable isotope methodologies.

View Article and Find Full Text PDF

Mitochondrial fatty-acid beta-oxidation (mFAO) plays a central role in mammalian energy metabolism. Multiple severe diseases are associated with defects in this pathway. Its kinetic structure is characterized by a complex wiring of which the functional implications have hardly been explored.

View Article and Find Full Text PDF

Introduction: Boiling ethanol extraction is a frequently used method for metabolomics studies of biological samples. However, the stability of several central carbon metabolites, including nucleotide triphosphates, and the influence of the cellular matrix on their degradation have not been addressed.

Objectives: To study how a complex cellular matrix extracted from yeast () may affect the degradation profiles of nucleotide triphosphates extracted under boiling ethanol conditions.

View Article and Find Full Text PDF