The membrane protein carbonic anhydrase IX (CAIX) is highly expressed in many hypoxic or von Hippel-Lindau tumor suppressor-mutated tumor types. Its restricted expression in healthy tissues makes CAIX an attractive diagnostic and therapeutic target. DPI-4452 is a CAIX-targeting cyclic peptide with a DOTA cage, allowing radionuclide chelation for theranostic purposes.
View Article and Find Full Text PDFPurpose: FAP is a membrane-bound protease under investigation as a pan-cancer target, given its high levels in tumors but limited expression in normal tissues. FAP-2286 is a radiopharmaceutical in clinical development for solid tumors that consists of two functional elements: a FAP-targeting peptide and a chelator used to attach radioisotopes. Preclinically, we evaluated the immune modulation and anti-tumor efficacy of FAP-2287, a murine surrogate for FAP-2286, conjugated to the radionuclide lutetium-177 (Lu) as a monotherapy and in combination with a PD-1 targeting antibody.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
September 2022
Purpose: Fibroblast activation protein (FAP) is a membrane-bound protease that has limited expression in normal adult tissues but is highly expressed in the tumor microenvironment of many solid cancers. FAP-2286 is a FAP-binding peptide coupled to a radionuclide chelator that is currently being investigated in patients as an imaging and therapeutic agent. The potency, selectivity, and efficacy of FAP-2286 were evaluated in preclinical studies.
View Article and Find Full Text PDFFibroblast activation protein (FAP) is a promising target for diagnosis and therapy of numerous malignant tumors. FAP-2286 is the conjugate of a FAP-binding peptide, which can be labeled with radionuclides for theranostic applications. We present the first-in-humans results using Lu-FAP-2286 for peptide-targeted radionuclide therapy (PTRT).
View Article and Find Full Text PDFClinically apparent tumors have often established an immunosuppressive tumor microenvironment which renders them "cold," meaning that there are low numbers of immune cells within the tumor. Consequently, novel immunotherapy approaches such as checkpoint inhibitors fail to reactivate the tumor-targeted immune cells. Here we describe the generation of heterotypic tumor-stroma spheroids to study various approaches aiming at the reactivation of cancer immunosurveillance.
View Article and Find Full Text PDFImmune checkpoint inhibitors promote T cell-mediated killing of cancer cells; however, only a subset of patients benefit from the treatment. A possible reason for this limitation may be that the tumor microenvironment (TME) is immune privileged, which may exclude cytotoxic T cells from the vicinity of cancer cells. The chemokine CXCL12 is key to the TME-driven immune suppression.
View Article and Find Full Text PDFBone marrow (BM) metastasis remains one of the main causes of death associated with solid tumors as well as multiple myeloma (MM). Targeting the BM niche to prevent or modulate metastasis has not been successful to date. Here, we show that stromal cell-derived factor-1 (SDF-1/CXCL12) is highly expressed in active MM, as well as in BM sites of tumor metastasis and report on the discovery of the high-affinity anti-SDF-1 PEGylated mirror-image l-oligonucleotide (olaptesed-pegol).
View Article and Find Full Text PDFThe sphingolipid S1P (sphingosine 1-phosphate) is known to be involved in a number of pathophysiological conditions such as cancer, autoimmune diseases and fibrosis. It acts extracellularly through a set of five G-protein-coupled receptors, but its intracellular actions are also well documented. Employing in vitro selection techniques, we identified an L-aptamer (Spiegelmer®) to S1P designated NOX-S93.
View Article and Find Full Text PDFBackground: Tumor irradiation blocks local angiogenesis, forcing any recurrent tumor to form new vessels from circulating cells. We have previously demonstrated that the post-irradiation recurrence of human glioblastomas in the brains of nude mice can be delayed or prevented by inhibiting circulating blood vessel-forming cells by blocking the interaction of CXCR4 with its ligand stromal cell-derived factor (SDF)-1 (CXCL12). In the present study we test this strategy by directly neutralizing SDF-1 in a clinically relevant model using autochthonous brain tumors in immune competent hosts.
View Article and Find Full Text PDFThe CXC chemokine ligand (CXCL12, or stromal cell-derived factor-1 as previously known) plays a critical role for homing and retention of chronic lymphocytic leukemia (CLL) cells in tissues such as the bone marrow (BM). In tissues, stromal cells constitutively secrete and present CXCL12 via cell-surface-bound glycosaminoglycans (GAGs), thereby attracting CLL cells and protecting them from cytotoxic drugs, a mechanism that may account for residual disease after conventional CLL therapy. NOX-A12, an RNA oligonucleotide in L-configuration (Spiegelmer) that binds and neutralizes CXCL12, was developed for interference with CXCL12 in the tumor microenvironment and for cell mobilization.
View Article and Find Full Text PDFAnemia of chronic inflammation is the most prevalent form of anemia in hospitalized patients. A hallmark of this disease is the intracellular sequestration of iron. This is a consequence of hepcidin-induced internalization and subsequent degradation of ferroportin, the hepcidin receptor and only known iron-export protein.
View Article and Find Full Text PDFBackground: Functional loss of the tumor suppressor Smad4 is involved in pancreatic and colorectal carcinogenesis and has been associated with the acquisition of invasiveness. We have previously demonstrated that the heterotrimeric basement membrane protein laminin-332 is a Smad4 target. Namely, Smad4 functions as a positive transcriptional regulator of all three genes encoding laminin-332; its loss is thus implicated in the reduced or discontinuous deposition of the heterotrimeric basement membrane molecule as evident in carcinomas.
View Article and Find Full Text PDFBackground: Functional inactivation of the tumor suppressor Smad4 in colorectal and pancreatic carcinogenesis occurs coincident with the transition to invasive growth. Breaking the basement membrane (BM) barrier, a prerequisite for invasive growth, can be due to tumor induced proteolytic tissue remodeling or to reduced synthesis of BM molecules by incipient tumor cells. Laminin-332 (laminin-5), a heterotrimeric BM component composed of alpha 3-, beta 3- and gamma 2-chains, has recently been identified as a target structure of Smad4 and represents the first example for expression control of an essential BM component by a tumor and invasion suppressor.
View Article and Find Full Text PDF