In 2017-2018, a group of international development funding agencies launched the Crops to End Hunger initiative to modernize public plant breeding in lower-income countries. To inform that initiative, USAID asked the International Food Policy Research Institute and the United States Department of Agriculture's Economic Research Service to estimate the impacts of faster productivity growth for 20 food crops on income and other indicators in 106 countries in developing regions in 2030. We first estimated the value of production in 2015 for each crop using data from FAO.
View Article and Find Full Text PDFAfrican swine fever is a deadly porcine disease that has spread into East Asia where it is having a detrimental effect on pork production. However, the implications of African swine fever on the global pork market are poorly explored. Two linked global economic models are used to explore the consequences of different scales of the epidemic on pork prices and on the prices of other food types and animal feeds.
View Article and Find Full Text PDFWe use IFPRI's IMPACT framework of linked biophysical and structural economic models to examine developments in global agricultural production systems, climate change, and food security. Building on related work on how increased investment in agricultural research, resource management, and infrastructure can address the challenges of meeting future food demand, we explore the costs and implications of these investments for reducing hunger in Africa by 2030. This analysis is coupled with a new investment estimation model, based on the perpetual inventory methodology (PIM), which allows for a better assessment of the costs of achieving projected agricultural improvements.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2014
Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
September 2010
Complex socio-ecological systems like the food system are unpredictable, especially to long-term horizons such as 2050. In order to manage this uncertainty, scenario analysis has been used in conjunction with food system models to explore plausible future outcomes. Food system scenarios use a diversity of scenario types and modelling approaches determined by the purpose of the exercise and by technical, methodological and epistemological constraints.
View Article and Find Full Text PDF