Publications by authors named "Dirk Vandenbroucke"

In myeloablative total body irradiation (TBI), lung shielding blocks are used to reduce the dose to the lungs and hence decrease the risk of radiation pneumonitis. Some centers are still using mega-Volt (MV) imaging with dedicated silver halide-based films during simulation and treatment for lung delineation and position verification. However, the availability of these films has recently become an issue.

View Article and Find Full Text PDF

Optically stimulated luminescence (OSL) film dosimeters, based on BaFBr:Euphosphor material, have major dosimetric advantages such as dose linearity, high spatial resolution, film re-usability, and immediate film readout. However, they exhibit an energy-dependent over-response at low photon energies because they are not made of tissue-equivalent materials. In this work, the OSL energy-dependent response was optimized by lowering the phosphor grain size and seeking an optimal choice of phosphor concentration and film thickness to achieve sufficient signal sensitivity.

View Article and Find Full Text PDF

All-inorganic CsPbBr perovskites have gained significant attention due to their potential in direct X-ray detection. The fabrication of stable, pinhole-free thick films remains challenging, hindering their integration in durable, large-area high-resolution devices. In this study, we propose a facile strategy using a non-conductive polymer to create a flexible, compact thick film under ambient conditions.

View Article and Find Full Text PDF

Radiotherapy is part of the treatment of over 50% of cancer patients. Its efficacy is limited by the radiotoxicity to the healthy tissue. FLASH-RT is based on the biological effect that ultra-high dose rates (UHDR) and very short treatment times strongly reduce normal tissue toxicity, while preserving the anti-tumoral effect.

View Article and Find Full Text PDF

The objective of this work is to review and assess the potential of MgB4O7:Ce,Li to fill in the gaps where the need for a new material for optically stimulated luminescence (OSL) dosimetry has been identified. We offer a critical assessment of the operational properties of MgB4O7:Ce,Li for OSL dosimetry, as reviewed in the literature and complemented by measurements of thermoluminescence spectroscopy, sensitivity, thermal stability, lifetime of the luminescence emission, dose response at high doses (>1000 Gy), fading and bleachability. Overall, compared with Al2O3:C, for example, MgB4O7:Ce,Li shows a comparable OSL signal intensity following exposure to ionizing radiation, a higher saturation limit (ca 7000 Gy) and a shorter luminescence lifetime (31.

View Article and Find Full Text PDF

Background: Optically stimulated luminescence (OSL) dosimeters produce a signal linear to the dose, which fades with time due to the spontaneous recombination of energetically unstable electron/hole traps. When used for radiotherapy (RT) applications, fading affects the signal-to-dose conversion and causes an error in the final dose measurement. Moreover, the signal fading depends to some extent on treatment-specific irradiation conditions such as irradiation times.

View Article and Find Full Text PDF

FLASH radiation therapy is a novel technique combining ultra-high dose rates (UHDR) with very short treatment times to strongly decrease normal tissue toxicity while preserving the anti-tumoral effect. However, the radiobiological mechanisms and exact conditions for obtaining the FLASH-effect are still under investigation. There are strong indications that parameters defining the beam structure, such as dose per pulse, instantaneous dose rate and pulse repetition frequency (PRF) are of importance.

View Article and Find Full Text PDF

The relevance of presampling modulation transfer function (MTF) measurements in digital mammography (DM) quality control (QC) is examined. Two studies are presented: a case study on the impact of a reduction in MTF on the technical image quality score and analysis of the robustness of routine QC MTF measurements. In the first study, two needle computed radiography (CR) plates with identical sensitivities were used with differences in the 50% point of the MTF ( ) larger than the limiting value in the European guidelines ( change between successive measurements).

View Article and Find Full Text PDF

Optical stimulated luminescence (OSL) combines reusability, sub-mm resolution, and a linear dose response in a single radiation detection technology. Such a combination is currently lacking in radiotherapy dosimetry. But OSL-films have a strong energy dependent response to keV photons due to a relative high effective atomic number (Z ).

View Article and Find Full Text PDF

Computed radiography (CR) uses storage phosphor imaging plates for digital imaging. Absorbed X-ray energy is stored in crystal defects. In read-out the energy is set free as blue photons upon optical stimulation.

View Article and Find Full Text PDF

Purpose: The purpose of this study is to develop a computer model to simulate the image acquisition for two computed radiography (CR) imaging systems used for neonatal chest imaging: (1) The Agfa ADC Compact, a flying spot reader with powder phosphor image plates (MD 40.0); and (2) the Agfa DX-S, a line-scanning CR reader with needle crystal phosphor image plates (HD 5.0).

View Article and Find Full Text PDF

The modulation transfer function (MTF) is well established as a metric to characterize the resolution performance of a digital radiographic system. Implemented by various laboratories, the edge technique is currently the most widespread approach to measure the MTF. However, there can be differences in the results attributed to differences in the analysis technique employed.

View Article and Find Full Text PDF

The modulation transfer function (MTF) describes the spatial resolution properties of imaging systems. In this work, the accuracy of our implementation of the edge method for calculating the presampled MTF was examined. Synthetic edge images with known MTF were used as gold standards for determining the robustness of the edge method.

View Article and Find Full Text PDF

Characterization of digital mammography systems is often performed by means of contrast-detail curves using a homogeneous phantom with inserts of different sizes and thicknesses. In this article, a more direct measure of the threshold contrast-detail characteristics of microcalcifications in clinical mammograms is proposed, which also takes into account routine processing and display. The proposed method scores the detectability of simulated microcalcifications with known size and aluminum-equivalent thickness.

View Article and Find Full Text PDF