Sigma-2-ligands (S2L) are characterized by high binding affinities to their cognate sigma-2 receptor, overexpressed in rapidly proliferating tumor cells. As such, S2L were developed as imaging probes (ISO1) or as cancer therapeutics, alone (SV119 [C6], SW43 [C10]) and as delivery vehicles for cytotoxic drug cargoes (C6-Erastin, C10-SMAC). However, the exact mechanism of S2L-induced cytotoxicity remains to be fully elucidated.
View Article and Find Full Text PDFCancer selective apoptosis remains a therapeutic challenge and off-target toxicity has limited enthusiasm for this target clinically. Sigma-2 ligands (S2) have been shown to enhance the cancer selectivity of small molecule drug candidates by improving internalization. Here, we report the synthesis of a novel drug conjugate, which was created by linking a clinically underperforming SMAC mimetic (second mitochondria-derived activator of caspases; LCL161), an inhibitor (antagonist) of inhibitor of apoptosis proteins (IAPinh) with the sigma-2 ligand SW43, resulting in the new chemical entity S2/IAPinh.
View Article and Find Full Text PDFPurpose: To investigate the metabolism of synovial sarcoma (SS) and elucidate the effect of malic enzyme 1 absence on SS redox homeostasis.
Experimental Design: ME1 expression was measured in SS clinical samples, SS cell lines, and tumors from an SS mouse model. The effect of ME1 absence on glucose metabolism was evaluated utilizing Seahorse assays, metabolomics, and C13 tracings.
Background: Ovarian cancer is initially responsive to frontline chemotherapy. Unfortunately, it often recurs and becomes resistant to available therapies and the survival rate for advanced and recurrent ovarian cancer is unacceptably low. We thus hypothesized that it would be possible to achieve more durable treatment responses by combining cisplatin chemotherapy with SW IV-134, a cancer-targeted peptide mimetic and inducer of cell death.
View Article and Find Full Text PDFGlycoprotein CD44 and alternative splice variants are overexpressed in many cancers and cancer stem cells. Binding of hyaluronic acid to CD44 activates cell signaling pathways, inducing cell proliferation, cell survival, and invasion. As such, CD44 is regarded as an excellent target for cancer therapy when this interaction can be blocked.
View Article and Find Full Text PDFThe aggressiveness of pancreatic cancer urgently requires more efficient treatment options. Because the sigma-2 (σ) receptor was recently proposed as a promising target for pancreatic cancer therapy, we explored our previously developed multifunctional thiosemicarbazones, designed to synergistically impair cell energy levels, by targeting σ and P-gp proteins and chelating Iron. A deconstruction approach was herein applied by removing one function at a time from the potent multifunctional thiosemicarbazones 1 and 2, to investigate the contribution to cytotoxicity of each target involved.
View Article and Find Full Text PDFClinical application of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-based cancer therapeutics has not reached optimal potencies in part due to inadequate drug stability and inefficiencies in cancer-selective drug delivery. As such, innovative strategies regarding drug design and delivery are of utmost importance to achieve improved treatment results. With our current study, we aimed at exploring the groundwork for a two-stage targeting concept, which is based on the intrinsic tumor homing capacity of mesenchymal stem cells (MSCs) as cellular drug factories for the in situ production of our newly designed and biomarker-targeted TRAIL-based TR3 therapeutics.
View Article and Find Full Text PDFBackground: Pancreatic cancer is a lethal malignancy that frequently acquires resistance to conventional chemotherapies often associated with overexpression of inhibitors of apoptosis proteins (IAPs). We have recently described a novel means to deliver second mitochondria-derived activator of caspases (SMAC) mimetics selectively to cancer cells employing the sigma-2 ligand/receptor interaction. The intrinsic death pathway agonist SMAC offers an excellent opportunity to counteract the anti-apoptotic activity of IAPs.
View Article and Find Full Text PDFBackground: Despite considerable efforts by scientific research, pancreatic cancer is the fourth leading cause of cancer related mortalities. Sigma-2 receptors, which are overexpressed in several tumors, represent promising targets for triggering selective pancreatic cancer cells death.
Methods: We selected five differently structured high-affinity sigma-2 ligands (PB28, PB183, PB221, F281 and PB282) to study how they affect the viability of diverse pancreatic cancer cells (human cell lines BxPC3, AsPC1, Mia PaCa-2, and Panc1 and mouse Panc-02, KCKO and KP-02) and how this is reflected in vivo in a tumor model.
Cancer-selective drug delivery is an important concept in improving treatment while minimizing off-site toxicities, and sigma-2 receptors, which are overexpressed in solid tumors, represent attractive pharmacologic targets. Select sigma-2 ligands have been shown to be rapidly internalized selectively into cancer cells while retaining the capacity to deliver small molecules as drug cargoes. We utilized the sigma-2-based drug delivery concept to convert Erastin, a clinically underperforming drug, into a potent pancreatic cancer therapeutic.
View Article and Find Full Text PDFTRAIL has been extensively explored as a cancer drug based on its tumor-selective activity profile but it is incapable per se of discriminating between death receptors expressed by normal host cells and transformed cancer cells. Furthermore, it is well documented that surface tethering substantially increases its biologic activity. We have previously reported on Meso-TR3, a constitutive TRAIL trimer targeted to the biomarker MUC16 (CA125), in which the entire ectodomain of human mesothelin was genetically fused to the TR3 platform, facilitating attachment to the cancer cells via the MUC16 receptor.
View Article and Find Full Text PDFTRAIL continues to garner substantial interest as a recombinant cancer therapeutic while the native cytokine itself serves important tumor surveillance functions when expressed in membrane-anchored form on activated immune effector cells. We have recently developed the genetically stabilized TRAIL platform TR3 in efforts to improve the limitations associated with currently available drug variants. While in the process of characterizing mesothelin-targeted TR3 variants using a single chain antibody (scFv) delivery format (SS-TR3), we discovered that the membrane-tethered cytokine had a substantially increased activity profile compared to non-targeted TR3.
View Article and Find Full Text PDFOne strategy in cancer immunotherapy is to capitalize on the key immunoregulatory and antigen presenting capabilities of dendritic cells (DCs). This approach is dependent on efficient delivery of tumor specific antigens to DCs, which subsequently induce an anti-tumor T-cell mediated immune response. Human adenovirus serotype 5 (HAdV5) has been used in human studies for gene delivery, but has limited infection in DCs, which lack the proper receptors.
View Article and Find Full Text PDFPancreatic adenocarcinoma is highly resistant to conventional therapeutics and has been shown to evade apoptosis by deregulation of the X-linked and cellular inhibitors of apoptosis proteins (XIAP and cIAP). Second mitochondria-derived activator of caspases (Smac) induces and amplifies cell death by reversing the anti-apoptotic activity of IAPs. Thus, Smac-derived peptide analogues (peptidomimetics) have been developed and shown to represent promising cancer therapeutics.
View Article and Find Full Text PDFBackground: Drug resistance is a significant problem in the treatment of ovarian cancer and can be caused by multiple mechanisms. Inhibition of apoptosis by the inhibitor of apoptosis proteins (IAPs) represents one such mechanism, and can be overcome by a mitochondrial protein called second mitochondria-derived activator of caspases (SMAC). We have previously shown that the ligands of sigma-2 receptors effectively induce tumor cell death.
View Article and Find Full Text PDFBackground: The targeted delivery of cancer therapeutics represents an ongoing challenge in the field of drug development. TRAIL is a promising cancer drug but its activity profile could benefit from a cancer-selective delivery mechanism, which would reduce potential side effects and increase treatment efficiencies. We recently developed the novel TRAIL-based drug platform TR3, a genetically fused trimer with the capacity for further molecular modifications such as the addition of tumor-directed targeting moieties.
View Article and Find Full Text PDFPatients with pancreatic cancer have dismal prognoses, and novel therapies are urgently needed. Mutations of the KRAS oncogene occur frequently in pancreatic cancer and represent an attractive target. Direct targeting of the predominant KRAS pathways have been challenging and research into therapeutic strategies have been now refocused on pathways downstream of KRAS, phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK [MEK]).
View Article and Find Full Text PDFOne major barrier in the development of pancreas cancer therapeutics is the selective delivery of the drugs to their cellular targets. We have previously developed several sigma-2 ligands and reported the discovery of a component of the receptor for these ligands. Several sigma-2 ligands have been shown to trigger apoptosis in pancreas cancer cells.
View Article and Find Full Text PDFNK-cell killing requires both the expression of activating receptor ligands and low MHC class I expression by target cells. Here we demonstrate that the expression of any of the murine ligands for the NK-cell activating receptor NKG2D results in a concomitant reduction in MHC class I expression. We show this both in tumor cell lines and in vivo.
View Article and Find Full Text PDFBackground: Sigma-2 receptor ligands have been studied for treatment of pancreatic cancer because they are preferentially internalized by proliferating cells and induce apoptosis. This mechanism of apoptosis is poorly understood, with varying reports of caspase-3 dependence. We evaluated multiple sigma-2 receptor ligands in this study, each shown to decrease tumor burden in preclinical models of human pancreatic cancer.
View Article and Find Full Text PDFThrombin generates fibrin and activates platelets and endothelium, causing thrombosis and inflammation. Endothelial thrombomodulin (TM) changes thrombin's substrate specificity toward cleavage of plasma protein C into activated protein C (APC), which opposes its thrombotic and inflammatory activities. Endogenous TM activity is suppressed in pathologic conditions, and antithrombotic interventions involving soluble TM are limited by rapid blood clearance.
View Article and Find Full Text PDFOne major challenge in the development of cancer therapeutics is the selective delivery of the drugs to their cellular targets. In the case of pancreatic cancer, the σ-2 receptor is a unique target that triggers apoptosis upon activation. We have previously developed a series of chemical compounds with high affinity for the σ-2 receptor and showed rapid internalization of the ligands.
View Article and Find Full Text PDFFluorescent derivatives of σ(2) high affinity ligand 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine 1 (PB28) were synthesized. NBD or dansyl fluorescent tags were connected through a 5- or 6-atom linker in two diverse positions of 1 structure. Good σ(2) affinities were obtained when the fluorescent tag was linked to 5-methoxytetralin nucleus replacing the methyl function.
View Article and Find Full Text PDFThe sigma-2 receptor, whose gene remains to be cloned, has been validated as a biomarker for tumour cell proliferation. Here we report the use of a novel photoaffinity probe, WC-21, to identify the sigma-2 receptor-binding site. WC-21, a sigma-2 ligand containing both a photoactive azide moiety and a fluorescein isothiocyanate group, irreversibly labels sigma-2 receptors in rat liver; the membrane-bound protein was identified as PGRMC1 (progesterone receptor membrane component 1).
View Article and Find Full Text PDF