Publications by authors named "Dirk Schweitzer"

Plant-based co-production of polyhydroxyalkanoates (PHAs) and seed oil has the potential to create a viable domestic source of feedstocks for renewable fuels and plastics. PHAs, a class of biodegradable polyesters, can replace conventional plastics in many applications while providing full degradation in all biologically active environments. Here we report the production of the PHA poly[(R)-3-hydroxybutyrate] (PHB) in the seed cytosol of the emerging bioenergy crop Camelina sativa engineered with a bacterial PHB biosynthetic pathway.

View Article and Find Full Text PDF

In order to shed light on metal-dependent mechanisms for O-O bond cleavage, and its microscopic reverse, we compare herein the electronic and geometric structures of O-derived binuclear Co(III)- and Mn(III)-peroxo compounds. Binuclear metal peroxo complexes are proposed to form as intermediates during Mn-promoted photosynthetic HO oxidation, and a Co-containing artificial leaf inspired by nature's photosynthetic HO oxidation catalyst. Crystallographic characterization of an extremely activated peroxo is made possible by working with substitution-inert, low-spin Co(III).

View Article and Find Full Text PDF

Engineering the production of polyhydroxyalkanoates (PHAs) into high biomass bioenergy crops has the potential to provide a sustainable supply of bioplastics and energy from a single plant feedstock. One of the major challenges in engineering C4 plants for the production of poly[(R)-3-hydroxybutyrate] (PHB) is the significantly lower level of polymer produced in the chloroplasts of mesophyll (M) cells compared to bundle sheath (BS) cells, thereby limiting the full PHB yield-potential of the plant. In this study, we provide evidence that the access to substrate for PHB synthesis may limit polymer production in M chloroplasts.

View Article and Find Full Text PDF

Iejimalide B, a structurally unique 24-membered polyene macrolide having a previously underutilized mode of anticancer activity, was synthesized according to a strategy employing Julia-Kocienski olefinations, a palladium-catalyzed Heck reaction, a palladium-catalyzed Marshall propargylation, a Keck-type esterification, and a palladium-catalyzed macrolide-forming, intramolecular Stille coupling of a highly complex cyclization substrate. The overall synthesis is efficient (19.5% overall yield for 15 linear steps) and allows for more practical scaled-up synthesis than previously reported strategies that differed in the order of assembly of key subunits and in the method of macrocyclization.

View Article and Find Full Text PDF

Iejimalides are novel macrolides that are cytostatic or cytotoxic against a wide range of cancer cells at low nanomolar concentrations. A recent study by our laboratory characterized the expression of genes and proteins that determine the downstream effects of iejimalide B. However, little is known about the cellular target(s) of iejimalide or downstream signaling that lead to cell-cycle arrest and/or apoptosis.

View Article and Find Full Text PDF

The syntheses and structures of three new coordinatively unsaturated, monomeric, square-pyramidal thiolate-ligated Fe(III) complexes are described, [Fe(III)((tame-N(3))S(2)(Me2))](+) (1), [Fe(III)(Et-N(2)S(2)(Me2))(py)](1-) (3), and [Fe(III)((tame-N(2)S)S(2)(Me2))](2-) (15). The anionic bis-carboxamide, tris-thiolate N(2)S(3) coordination sphere of 15 is potentially similar to that of the yet-to-be characterized unmodified form of NHase. Comparison of the magnetic and reactivity properties of these reveals how anionic charge build up (from cationic 1 to anionic 3 and dianionic 15) and spin-state influence apical ligand affinity.

View Article and Find Full Text PDF
Article Synopsis
  • Iejimalide B is a marine macrolide that inhibits growth in cancer cells, specifically showing different effects on LNCaP and PC-3 prostate cancer cell lines.
  • Iejimalide B causes G0/G1 arrest and apoptosis in LNCaP cells, while in PC-3 cells, it leads to cell cycle arrest without inducing apoptosis.
  • The study indicates that the mechanism of action for Iejimalide B varies between cell lines, with a p53-dependent pathway involved in apoptosis for LNCaP cells.
View Article and Find Full Text PDF

The potent anticancer compound iejimalide B (1) was prepared by a total synthesis through a strategy that features Julia olefinations, Wittig olefinations, a Carreira enantioselective alkynylation, a Heck reaction, a Marshall propargylation reaction, a Stille coupling, and a Shiina macrolactonization.

View Article and Find Full Text PDF

A series of five-coordinate thiolate-ligated complexes [M(II)(tren)N4S(Me2)]+ (M = Mn, Fe, Co, Ni, Cu, Zn; tren = tris(2-aminoethyl)amine) are reported, and their structural, electronic, and magnetic properties are compared. Isolation of dimeric [Ni(II)(SN4(tren)-RS(dang))]2 ("dang"= dangling, uncoordinated thiolate supported by H bonds), using the less bulky [(tren)N4S](1-) ligand, pointed to the need for gem-dimethyls adjacent to the sulfur to sterically prevent dimerization. All of the gem-dimethyl derivatized complexes are monomeric and, with the exception of [Ni(II)(S(Me2)N4(tren)]+, are isostructural and adopt a tetragonally distorted trigonal bipyramidal geometry favored by ligand constraints.

View Article and Find Full Text PDF

The syntheses of six iejimalide carbamate derivatives are described. Their biological activity and those of the unmodified iejimalides A and B against breast and prostate cancer cell lines were determined. These results show that the serine hydroxyl group of iejimalides A and B is a permissive site that can be functionalized to form carbamate derivatives without significant loss of normal biological activity.

View Article and Find Full Text PDF

Detailed spectroscopic and computational studies of the low-spin iron complexes [Fe(III)(S2(Me2)N3 (Pr,Pr))(N3)] (1) and [Fe(III)(S2(Me2)N3 (Pr,Pr))]1+ (2) were performed to investigate the unique electronic features of these species and their relation to the low-spin ferric active sites of nitrile hydratases. Low-temperature UV/vis/NIR and MCD spectra of 1 and 2 reflect electronic structures that are dominated by antibonding interactions of the Fe 3d manifold and the equatorial thiolate S 3p orbitals. The six-coordinate complex 1 exhibits a low-energy S(pi) --> Fe 3d(xy) (approximately 13,000 cm(-1)) charge-transfer transition that results predominantly from the low energy of the singly occupied Fe 3d(xy) orbital, due to pure pi interactions between this acceptor orbital and both thiolate donor ligands in the equatorial plane.

View Article and Find Full Text PDF

Nitrile hydratase (NHase) is an iron-containing metalloenzyme that converts nitriles to amides. The mechanism by which this biochemical reaction occurs is unknown. One mechanism that has been proposed involves nucleophilic attack of an Fe-bound nitrile by water (or hydroxide).

View Article and Find Full Text PDF

To examine how small structural changes influence the reactivity and magnetic properties of biologically relevant metal complexes, the reactivity and magnetic properties of two structurally related five-coordinate Fe(III) thiolate compounds are compared. (Et,Pr)-ligated [Fe(III)(S(2)(Me2)N(3)(Et,Pr))]PF(6) (3) is synthesized via the abstraction of a sulfur from alkyl persulfide ligated [Fe(III)(S(2)(Me2)N(3)(Et,Pr))-S(pers)]PF(6) (2) using PEt(3). (Et,Pr)-3 is structurally related to (Pr,Pr)-ligated [Fe(III)(S(2)(Me2)N(3)(Pr,Pr))]PF(6) (1), a nitrile hydratase model compound previously reported by our group, except it contains one fewer methylene unit in its ligand backbone.

View Article and Find Full Text PDF