Publications by authors named "Dirk Reinert"

GTP Cyclohydrolase I (GCH1) catalyses the conversion of guanosine triphosphate (GTP) to dihydroneopterin triphosphate (H2NTP), the initiating step in the biosynthesis of tetrahydrobiopterin (BH4). BH4 functions as co-factor in neurotransmitter biosynthesis. BH4 homeostasis is a promising target to treat pain disorders in patients.

View Article and Find Full Text PDF

Guanosine triphosphate (GTP) cyclohydrolase I (GCH1) catalyzes the conversion of GTP to dihydroneopterin triphosphate (H2NTP), the initiating step in the biosynthesis of tetrahydrobiopterin (BH4). Besides other roles, BH4 functions as cofactor in neurotransmitter biosynthesis. The BH4 biosynthetic pathway and GCH1 have been identified as promising targets to treat pain disorders in patients.

View Article and Find Full Text PDF

Keap1 is a substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex and plays an important role in the cellular response to oxidative stress. It binds Nrf2 with its Kelch domain and thus triggers the ubiquitinylation and degradation of Nrf2. Oxidative stress prevents the degradation of Nrf2 and leads to the activation of cytoprotective genes.

View Article and Find Full Text PDF

Glucokinase (GK) plays a major role in the regulation of blood glucose homeostasis in both the liver and the pancreas. In the liver, GK is controlled by the GK regulatory protein (GKRP). GKRP in turn is activated by fructose 6-phosphate (F6P) and inactivated by fructose 1-phosphate (F1P).

View Article and Find Full Text PDF

The crystal structure of the full mosquitocidal toxin from Bacillus sphaericus (MTX(holo)) has been determined at 2.5 A resolution by the molecular replacement method. The resulting structure revealed essentially the complete chain consisting of four ricin B-type domains curling around the catalytic domain in a hedgehog-like assembly.

View Article and Find Full Text PDF

The catalytic domain of a mosquitocidal toxin prolonged by a C-terminal 44 residue linker connecting to four ricin B-like domains was crystallized. Three crystal structures were established at resolutions between 2.5A and 3.

View Article and Find Full Text PDF

The large cytotoxins of Clostridia species glycosylate and thereby inactivate small GTPases of the Rho family. Clostridium difficile toxins A and B and Clostridium sordellii lethal toxin use UDP-glucose as the donor for glucosylation of Rho/Ras GTPases. In contrast, alpha-toxin from Clostridium novyi N-acetylglucosaminylates Rho GTPases by using UDP-N-acetylglucosamine as a donor substrate.

View Article and Find Full Text PDF

Toxin B is a member of the family of large clostridial cytotoxins which are of great medical importance. Its catalytic fragment was crystallized in the presence of UDP-glucose and Mn2+. The structure was determined at 2.

View Article and Find Full Text PDF

The membrane protein squalene-hopene cyclase was cocrystallized with 2-azasqualene and analyzed by X-ray diffraction to 2.13 A resolution. The conformation of this close analog was clearly established, and it agreed with the common textbook presentation.

View Article and Find Full Text PDF

The binding structures of 11 human oxidosqualene cyclase inhibitors designed as cholesterol-lowering agents were determined for the squalene-hopene cyclase from Alicyclobacillus acidocaldarius, which is the only structurally known homologue of the human enzyme. The complexes were produced by cocrystallization, and the structures were elucidated by X-ray diffraction analyses. All inhibitors were bound in the large active center cavity.

View Article and Find Full Text PDF