Publications by authors named "Dirk Reiners"

Condition assessment of civil engineering structures has been an active research area due to growing concerns over the safety of aged as well as new civil structures. Utilization of emerging immersive visualization technologies such as Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR) in the architectural, engineering, and construction (AEC) industry has demonstrated that these visualization tools can be paradigm-shifting. Extended Reality (XR), an umbrella term for VR, AR, and MR technologies, has found many diverse use cases in the AEC industry.

View Article and Find Full Text PDF

Background: This paper presents a novel iterative approach and rigorous accuracy testing for geometry modeling language - a Partition-based Optimization Model for Generative Anatomy Modeling Language (POM-GAML). POM-GAML is designed to model and create anatomical structures and their variations by satisfying any imposed geometric constraints using a non-linear optimization model. Model partitioning of POM-GAML creates smaller sub-problems of the original model to reduce the exponential execution time required to solve the constraints in linear time with a manageable error.

View Article and Find Full Text PDF

Background: Linking high-throughput experimental data with biological networks is a key step for understanding complex biological systems. Currently, visualization tools for large metabolic networks often result in a dense web of connections that is difficult to interpret biologically. The MetNetGE application organizes and visualizes biological networks in a meaningful way to improve performance and biological interpretability.

View Article and Find Full Text PDF

Several critical limitations exist in the currently available tracking technologies for fully enclosed virtual reality (VR) systems. While several 6DOF tracking projects such as Hedgehog have successfully demonstrated excellent accuracy, precision, and robustness within moderate budgets, these projects still include elements of hardware that can interfere with the user's visual experience. The objective of this project is to design a tracking solution for fully enclosed VR displays that achieves comparable performance to available commercial solutions but without any artifacts that can obscure the user's view.

View Article and Find Full Text PDF