Publications by authors named "Dirk Ostareck"

Deletions on the long arm of chromosome 9 (del(9q)) are recurrent abnormalities in about 2 % of acute myeloid leukemia cases, which usually involve HNRNPK and are frequently associated with other known aberrations. Based on an Hnrnpk haploinsufficient mouse model, a recent study demonstrated a function of hnRNP K in pathogenesis of myeloid malignancies via the regulation of cellular proliferation and myeloid differentiation programs. Here, we provide evidence that reduced hnRNP K expression results in the dysregulated expression of C/EBPα and additional transcription factors.

View Article and Find Full Text PDF

Introduction: Predicting intensive care unit length of stay and outcome following cardiac surgery is currently based on clinical parameters. Novel biomarkers could be employed to improve the prediction models.

Materials And Methods: We performed a qualitative cytokine screening array to identify highly expressed biomarkers in preoperative blood samples of cardiac surgery patients.

View Article and Find Full Text PDF

Macrophages exert the primary cellular immune response. Pathogen components like bacterial lipopolysaccharides (LPS) stimulate macrophage migration, phagocytotic activity and cytokine expression. Previously, we identified the poly(A) RNA interactome of RAW 264.

View Article and Find Full Text PDF

N6-methyladenosine (m6A) is the most abundant internal RNA modification in eukaryotic mRNAs and influences many aspects of RNA processing. miCLIP (m6A individual-nucleotide resolution UV crosslinking and immunoprecipitation) is an antibody-based approach to map m6A sites with single-nucleotide resolution. However, due to broad antibody reactivity, reliable identification of m6A sites from miCLIP data remains challenging.

View Article and Find Full Text PDF

Post-transcriptional control is essential to safeguard structural and metabolic changes in enucleated reticulocytes during their terminal maturation to functional erythrocytes. The timely synthesis of arachidonate 15-lipoxygenase (ALOX15), which initiates mitochondria degradation at the final stage of reticulocyte maturation is regulated by the multifunctional protein HNRNPK. It constitutes a silencing complex at the ALOX15 mRNA 3' untranslated region that inhibits translation initiation at the AUG by impeding the joining of ribosomal 60S subunits to 40S subunits.

View Article and Find Full Text PDF

Innate immune response is triggered by pathogen components, like lipopolysaccharides (LPS) of gram-negative bacteria. LPS initiates Toll-like receptor 4 (TLR4) signaling, which involves mitogen activated protein kinases (MAPK) and nuclear factor kappa B (NFκB) in different pathway branches and ultimately induces inflammatory cytokine and chemokine expression, macrophage migration and phagocytosis. Timely gene transcription and post-transcriptional control of gene expression confer the adequate synthesis of signaling molecules.

View Article and Find Full Text PDF

Acute myeloid leukemia is an aggressive disease that arises from clonal expansion of malignant hematopoietic precursor cells of the bone marrow. Deletions on the long arm of chromosome 9 (del(9q)) are observed in 2% of acute myeloid leukemia patients. Our deletion analysis in a cohort of 31 del(9q) acute myeloid leukemia patients further supports the importance of a minimally deleted region composed of seven genes potentially involved in leukemogenesis: GKAP1, KIF27, C9ORF64, HNRNPK, RMI1, SLC28A3 and NTRK2.

View Article and Find Full Text PDF

Introduction: Mechanical ventilation is known to activate oxidative stress and proteolytic pathways in the diaphragm. Trauma by inducing inflammation and activating proteolytic pathways may potentiate the effects of mechanical ventilation on the diaphragm. In a blunt chest trauma with concomitant injuries we tested the hypothesis that trauma via inflammation further activates the proteolytic pathways and worsens atrophy in the diaphragm.

View Article and Find Full Text PDF

Pathogen components, such as lipopolysaccharides of Gram-negative bacteria that activate Toll-like receptor 4, induce mitogen activated protein kinases and NFκB through different downstream pathways to stimulate pro- and anti-inflammatory cytokine expression. Importantly, post-transcriptional control of the expression of Toll-like receptor 4 downstream signaling molecules contributes to the tight regulation of inflammatory cytokine synthesis in macrophages. Emerging evidence highlights the role of RNA-binding proteins (RBPs) in the post-transcriptional control of the innate immune response.

View Article and Find Full Text PDF

Post-transcriptional regulation is crucial for structural and functional alterations in erythropoiesis. Enucleation of erythroid progenitors precedes reticulocyte release into circulation. In enucleated cells, reticulocyte 15-lipoxygenase (r15-LOX, also known as ALOX15) initiates mitochondria degradation.

View Article and Find Full Text PDF

To secure the functionality of activated macrophages in the innate immune response, efficient life span control is required. Recognition of bacterial lipopolysaccharides (LPS) by toll-like receptor 4 (TLR4) induces downstream signaling pathways, which merge to induce the expression of cytokine genes and anti-apoptotic genes. MicroRNAs (miRNAs) have emerged as important inflammatory response modulators, but information about their functional impact on apoptosis is scarce.

View Article and Find Full Text PDF

Protein synthesis is a primary energy-consuming process in the cell. Therefore, under hypoxic conditions, rapid inhibition of global mRNA translation represents a major protective strategy to maintain energy metabolism. How some mRNAs, especially those that encode crucial survival factors, continue to be efficiently translated in hypoxia is not completely understood.

View Article and Find Full Text PDF

Abstract Analysis of arginine methylation, which affects specific protein interactions in eukaryotic cells, requires access to methylated protein for biophysical and biochemical studies. Methylation of heterogeneous nuclear ribonucleoprotein K (hnRNP K) upon co-expression with protein arginine methyltransferase 1 in E. coli was monitored by mass spectrometry and found to be identical to the modification of hnRNP K purified from mammalian cells.

View Article and Find Full Text PDF

DDX6 (Rck/p54), a member of the DEAD-box family of helicases, is highly conserved from unicellular eukaryotes to vertebrates. Functions of DDX6 and its orthologs in dynamic ribonucleoproteins contribute to global and transcript-specific messenger RNA (mRNA) storage, translational repression, and decay during development and differentiation in the germline and somatic cells. Its role in pathways that promote mRNA-specific alternative translation initiation has been shown to be linked to cellular homeostasis, deregulated tissue development, and the control of gene expression in RNA viruses.

View Article and Find Full Text PDF

Macrophage activation by bacterial lipopolysaccharides (LPS) is induced through Toll-like receptor 4 (TLR4). The synthesis and activity of TLR4 downstream signaling molecules modulates the expression of pro- and anti-inflammatory cytokines. To address the impact of post-transcriptional regulation on that process, we performed RIP-Chip analysis.

View Article and Find Full Text PDF

Vascular endothelial growth factor A (VEGF) is a crucial proangiogenic factor, which regulates blood vessel supply under physiologic and pathologic conditions. The VEGF mRNA 5'-untranslated region (5'-UTR) bears internal ribosome entry sites (IRES), which confer sustained VEGF mRNA translation under hypoxia when 5'-cap-dependent mRNA translation is inhibited. VEGF IRES-mediated initiation of translation requires the modulated interaction of trans-acting factors.

View Article and Find Full Text PDF

The Epstein-Barr Virus (EBV) -encoded EBNA2 protein, which is essential for the in vitro transformation of B-lymphocytes, interferes with cellular processes by binding to proteins via conserved sequence motifs. Its Arginine-Glycine (RG) repeat element contains either symmetrically or asymmetrically di-methylated arginine residues (SDMA and ADMA, respectively). EBNA2 binds via its SDMA-modified RG-repeat to the survival motor neurons protein (SMN) and via the ADMA-RG-repeat to the NP9 protein of the human endogenous retrovirus K (HERV-K (HML-2) Type 1).

View Article and Find Full Text PDF

Studies on the post-transcriptional control of gene expression in hematopoietic cells have uncovered that a subfamily of heterogeneous nuclear ribonucleoproteins (hnRNPs) is involved in cytoplasmic gene regulation. Among them hnRNP K and hnRNPs E1/E2 share common structural motifs, the hnRNP K homology (KH) domains that provide a functional basis for RNA binding. Specific sub-cellular localization and differentiation dependent post-translational modifications modulate the interaction of these proteins with mRNA and proteins in messenger ribonucleoprotein complexes (mRNPs), the latter generating connectivity to cell signaling events.

View Article and Find Full Text PDF

Erythroid precursor cells lose the capacity for mRNA synthesis due to exclusion of the nucleus during maturation. Therefore, the stability and translation of mRNAs that code for specific proteins, which function in late stages of maturation when reticulocytes become erythrocytes, are controlled tightly. Reticulocyte 15-lipoxygenase (r15-LOX) initiates the breakdown of mitochondria in mature reticulocytes.

View Article and Find Full Text PDF

Parkin is an ubiquitin-protein ligase (E3), mutations of which cause juvenile onset - autosomal recessive Parkinson's disease, and result in reduced enzymic activity. In contrast, increased levels are protective against mitochondrial dysfunction and neurodegeneration, the mechanism of which is largely unknown. In this study, 2-DE and MS proteomic techniques were utilised to investigate the effects of increased Parkin levels on protein expression in whole cell lysates using in an inducible Parkin expression system in HEK293 cells, and also to isolate potential interactants of Parkin using tandem affinity purification and MS.

View Article and Find Full Text PDF

The positive-strand RNA genome of the Hepatitis C virus (HCV) contains an internal ribosome entry site (IRES) in the 5'untranslated region (5'UTR) and structured sequence elements within the 3'UTR, but no poly(A) tail. Employing a limited set of initiation factors, the HCV IRES coordinates the 5'cap-independent assembly of the 43S pre-initiation complex at an internal initiation codon located in the IRES sequence. We have established a Huh7 cell-derived in vitro translation system that shows a 3'UTR-dependent enhancement of 43S pre-initiation complex formation at the HCV IRES.

View Article and Find Full Text PDF

Erythroid precursor cells undergo nuclear extrusion and degradation of mitochondria when they mature to erythrocytes. It has been suggested before that the reticulocyte 15-lipoxygenase (r15-LOX) plays an important role in initiating the breakdown of mitochondria in rabbit reticulocytes. The expression of rabbit r15-LOX is regulated by the heterogeneous nuclear ribonucleoproteins (hnRNP) K and E1 at the translational level.

View Article and Find Full Text PDF

Unraveling the molecular basis of the life cycle of hepatitis C virus (HCV), a prevalent agent of human liver disease, entails the identification of cell-encoded factors that participate in the replication of the viral RNA genome. This study provides evidence that the so-called NF/NFAR proteins, namely, NF90/NFAR-1, NF110/NFAR-2, NF45, and RNA helicase A (RHA), which mostly belong to the dsRBM protein family, are involved in the HCV RNA replication process. NF/NFAR proteins were shown to specifically bind to replication signals in the HCV genomic 5' and 3' termini and to promote the formation of a looplike structure of the viral RNA.

View Article and Find Full Text PDF

The protein tyrosine kinase c-Src is regulated by two intramolecular interactions. The repressed state is achieved through the interaction of the Src homology 2 (SH2) domain with the phosphorylated C-terminal tail and the association of the SH3 domain with a polyproline type II helix formed by the linker region between SH2 and the kinase domain. hnRNP K, the founding member of the KH domain protein family, is involved in chromatin remodeling, regulation of transcription, and translation of specific mRNAs and is a target in different signal transduction pathways.

View Article and Find Full Text PDF

hnRNP K and hnRNP E1/E2 are RNA-binding proteins comprised of three hnRNP K-homology (KH) domains. These proteins are involved in the translational control and stabilization of mRNAs in erythroid cells. hnRNP E1 and hnRNP K regulate the translation of reticulocyte 15-lipoxygenase (r15-LOX) mRNA.

View Article and Find Full Text PDF