In natural photosynthesis, light is used for the production of chemical energy carriers to fuel biological activity. The re-engineering of natural photosynthetic pathways can provide inspiration for sustainable fuel production and insights for understanding the process itself. Here, we employ a semiartificial approach to study photobiological water splitting via a pathway unavailable to nature: the direct coupling of the water oxidation enzyme, photosystem II, to the H2 evolving enzyme, hydrogenase.
View Article and Find Full Text PDFThis discussion describes a direct comparison of photoelectrochemical (PEC) water oxidation activity between a photosystem II (PSII)-functionalised photoanode and a synthetic nanocomposite photoanode. The semi-biological photoanode is composed of PSII from the thermophilic cyanobacterium Thermosynechococcus elongatus on a mesoporous indium tin oxide electrode (mesoITO|PSII). PSII embeds all of the required functionalities for light absorption, charge separation and water oxidation and ITO serves solely as the electron collector.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2013
Take a breath: An oxygen-tolerant hydrogenase can be employed with a dye in a photocatalytic scheme for the generation of H2 . The homogeneous system does not require a redox mediator and visible-light irradiation yields high amounts of H2 even in the presence of air.
View Article and Find Full Text PDF