Publications by authors named "Dirk Martens"

Monoclonal antibodies are the workhorse of the pharmaceutical industry due to their potential to treat a variety of different diseases while providing high specificity and efficiency. As a consequence, a variety of production processes have been established within the biomanufacturing industry. However, the rapidly increasing demand for therapeutic molecules amid the recent COVID-19 pandemic demonstrated that there still is a clear need to establish novel, highly productive, and flexible production processes.

View Article and Find Full Text PDF

Monoclonal antibodies (mAb) are commonly manufactured by either discontinuous operations like fed-batch (FB) or continuous processes such as steady-state perfusion. Both process types comprise opposing advantages and disadvantages in areas such as plant utilization, feasible cell densities, media consumption and process monitoring effort. In this study, we show feasibility of a promising novel hybrid process strategy that combines beneficial attributes of both process formats.

View Article and Find Full Text PDF

The potential of sponge-derived chemicals for pharmaceutical applications remains largely unexploited due to limited available biomass. Although many have attempted to culture marine sponge cells in vitro to create a scalable production platform for such biopharmaceuticals, these efforts have been mostly unsuccessful. We recently showed that Geodia barretti sponge cells could divide rapidly in M1 medium.

View Article and Find Full Text PDF

Monoclonal antibodies (mAb) have gained enormous therapeutic application during the last decade as highly efficient and flexible tools for the treatment of various diseases. Despite this success, there remain opportunities to drive down the manufacturing costs of antibody-based therapies through cost efficiency measures. To reduce production costs, novel process intensification methods based on state-of-the-art fed-batch and perfusion have been implemented during the last few years.

View Article and Find Full Text PDF

Real-time, detailed online information on cell cultures is essential for understanding modern biopharmaceutical production processes. The determination of key parameters, such as cell density and viability, is usually based on the offline sampling of bioreactors. Gathering offline samples is invasive, has a low time resolution, and risks altering or contaminating the production process.

View Article and Find Full Text PDF

Process intensification is increasingly used in the mammalian biomanufacturing industry. The key driver of this trend is the need for more efficient and flexible production strategies to cope with the increased demand for biotherapeutics predicted in the next years. Therefore, such intensified production strategies should be designed, established, and characterized.

View Article and Find Full Text PDF

Vaccines pave the way out of the SARS-CoV-2 pandemic. Besides mRNA and adenoviral vector vaccines, effective protein-based vaccines are needed for immunization against current and emerging variants. We have developed a virus-like particle (VLP)-based vaccine using the baculovirus-insect cell expression system, a robust production platform known for its scalability, low cost, and safety.

View Article and Find Full Text PDF

Currently, the mammalian biomanufacturing industry explores process intensification (PI) to meet upcoming demands of biotherapeutics while keeping production flexible but, more importantly, as economic as possible. However, intensified processes often require more development time compared with conventional fed-batches (FBs) preventing their implementation. Hence, rapid and efficient, yet straightforward strategies for PI are needed.

View Article and Find Full Text PDF

Besides being considered pathogens, viruses are important drivers of evolution and they can shape large ecological and biogeochemical processes, by influencing host fitness, population dynamics, and community structures. Moreover, they are simple systems that can be used and manipulated to be beneficial and useful for biotechnological applications. In this context, microalgae biotechnology is a growing field of research, which investigated the usage of photosynthetic microorganisms for the sustainable production of food, fuel, chemical, and pharmaceutical sectors.

View Article and Find Full Text PDF

Current CHO cell production processes require an optimized space-time-yield. Process intensification can support achieving this by enhancing the productivity and improving facility utilization. The use of perfusion at the last stage of the seed train (N-1) for high cell density inoculation of the fed-batch N-stage production culture is a relatively new approach with few industry applicable examples.

View Article and Find Full Text PDF

Baculovirus expression vectors are successfully used for the commercial production of complex (glyco)proteins in eukaryotic cells. The genome engineering of single-copy baculovirus infectious clones (bacmids) in has been valuable in the study of baculovirus biology, but bacmids are not yet widely applied as expression vectors. An important limitation of first-generation bacmids for large-scale protein production is the rapid loss of gene of interest (GOI) expression.

View Article and Find Full Text PDF

Sponges (Phylum Porifera) are among the oldest Metazoa and considered critical to understanding animal evolution and development. They are also the most prolific source of marine-derived chemicals with pharmaceutical relevance. Cell lines are important tools for research in many disciplines, and have been established for many organisms, including freshwater and terrestrial invertebrates.

View Article and Find Full Text PDF

Outer membrane vesicles (OMVs) are nanoparticles secreted by Gram-negative bacteria that can be used for diverse biotechnological applications. Interesting applications have been developed, where OMVs are the basis of drug delivery, enzyme carriers, adjuvants, and vaccines. Historically, OMV research has mainly focused on vaccines.

View Article and Find Full Text PDF

Outer membrane vesicles (OMVs) are nanoparticles produced by Gram-negative bacteria that can be used as vaccines. The application of OMVs as vaccine component can be expanded by expressing heterologous antigens on OMVs, creating an OMV-based antigen presenting platform. This study aims to develop a production process for such OMV-based vaccines and studies a production method based on meningococcal OMVs that express heterologous antigens on their surface.

View Article and Find Full Text PDF

Outer membrane vesicles (OMVs) produced by bacteria are interesting vaccine candidates. OMVs are nanoparticles that contain many immunogenic components, are self-adjuvating, and non-replicative. Despite recent insights in the biogenesis of OMVs, there is no consensus on a conserved mechanism of OMV release and the OMV yield from bacterial cultures remains low.

View Article and Find Full Text PDF

Sponges are rich sources of novel natural products. Production in cell cultures may be an option for supply of these compounds but there are currently no sponge cell lines. Because there is a lack of understanding about the precise conditions and nutritional requirements that are necessary to sustain sponge cells in vitro, there has yet to be a defined, sponge-specific nutrient medium.

View Article and Find Full Text PDF

Background: Outer membrane vesicles (OMVs) are nanoparticles released by Gram-negative bacteria and can be used as vaccines. Often, detergents are used to promote release of OMVs and to remove the toxic lipopolysaccharides. Lipopolysaccharides can be detoxified by genetic modification such that vesicles spontaneously produced by bacteria can be directly used as vaccines.

View Article and Find Full Text PDF

In a Chinese Hamster Ovary (CHO) cell fed-batch process, arrest of cell proliferation and an almost threefold increase in cell size occurred, which is associated with an increase in cell-specific productivity. In this study, transcriptome analysis is performed to identify the molecular mechanisms associated with this. Cell cycle analysis reveals that the cells are arrested mainly in the G /G phase.

View Article and Find Full Text PDF

Transcriptome and metabolism analysis were performed to evaluate the scale-down of a CHO cell fed-batch process from a 10 L bioreactor to an ambr 15 (ambr) system. Two different agitation scale-down principles were applied, resulting in two different agitation rates in the ambr system: 1300 RPM based on the agitator tip speed, and 800 rpm based on the volumetric power input (P/V). Culture performance including cell growth, product titer, glycosylation, and specific consumption/production rates of metabolites was the same for both agitation rates in the ambr and was comparable to that of the 10 L system.

View Article and Find Full Text PDF

Neochloris oleoabundans is an oleaginous microalgal species that can be cultivated in fresh water as well as salt water. Using salt water gives the opportunity to reduce production costs and the fresh water footprint for large scale cultivation. Production of triacylglycerols (TAG) usually includes a biomass growth phase in nitrogen-replete conditions followed by a TAG accumulation phase under nitrogen-deplete conditions.

View Article and Find Full Text PDF

Normally, the growth profile of a CHO cell fed-batch process can be divided into two main phases based on changes in cell concentration, being an exponential growth phase and a stationary (non-growth) phase. In this study, an additional phase is observed during which the cell division comes to a halt but the cell growth continues in the form of an increase in cell size. The cell size increase (SI) phase occurs between the exponential proliferation phase (also called the number increase or NI phase) and the stationary phase.

View Article and Find Full Text PDF

Outer membrane vesicles (OMVs) are spherical membrane nanoparticles released by Gram-negative bacteria. OMVs can be quantified in complex matrices by nanoparticle tracking analysis (NTA). NTA can be performed in static mode or with continuous sample flow that results in analysis of more particles in a smaller time-frame.

View Article and Find Full Text PDF

Outer membrane vesicles (OMVs) are naturally non-replicating, highly immunogenic spherical nanoparticles derived from Gram-negative bacteria. OMVs from pathogenic bacteria have been successfully used as vaccines against bacterial meningitis and sepsis among others and the composition of the vesicles can easily be engineered. OMVs can be used as a vaccine platform by engineering heterologous antigens to the vesicles.

View Article and Find Full Text PDF

Background: Day/night cycles regulate the circadian clock of organisms to program daily activities. Many species of microalgae have a synchronized cell division when grown under a day/night cycle, and synchronization might influence biomass yield and composition. Therefore, the aim of this study was to study the influence of day/night cycle on biomass yield and composition of the green microalgae .

View Article and Find Full Text PDF

Lipid production in microalgae is highly dependent on the applied light intensity. However, for the EPA producing model-diatom Phaeodactylum tricornutum, clear consensus on the impact of incident light intensity on lipid productivity is still lacking. This study quantifies the impact of different incident light intensities on the biomass, TAG and EPA yield on light in nitrogen starved batch cultures of P.

View Article and Find Full Text PDF