Cardiac mechanics modelling promises to revolutionize personalized health care; however, inferring patient-specific biophysical parameters, which are critical for understanding myocardial functions and performance, poses substantial methodological challenges. Our work is primarily motivated to determine the passive stiffness of the myocardium from the measurement of the left ventricle (LV) volume at various time points, which is crucial for diagnosing cardiac physiological conditions. Although there have been significant advancements in cardiac mechanics modelling, the tasks of inference and uncertainty quantification of myocardial stiffness remain challenging, with high computational costs preventing real-time decision support.
View Article and Find Full Text PDFOne-dimensional (1D) cardiovascular models offer a non-invasive method to answer medical questions, including predictions of wave-reflection, shear stress, functional flow reserve, vascular resistance and compliance. This model type can predict patient-specific outcomes by solving 1D fluid dynamics equations in geometric networks extracted from medical images. However, the inherent uncertainty in in vivo imaging introduces variability in network size and vessel dimensions, affecting haemodynamic predictions.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
August 2024
Computational, or in silico, models are an effective, noninvasive tool for investigating cardiovascular function. These models can be used in the analysis of experimental and clinical data to identify possible mechanisms of (ab)normal cardiovascular physiology. Recent advances in computing power and data management have led to innovative and complex modeling frameworks that simulate cardiovascular function across multiple scales.
View Article and Find Full Text PDFOne-dimensional (1D) cardiovascular models offer a non-invasive method to answer medical questions, including predictions of wave-reflection, shear stress, functional flow reserve, vascular resistance, and compliance. This model type can predict patient-specific outcomes by solving 1D fluid dynamics equations in geometric networks extracted from medical images. However, the inherent uncertainty in in-vivo imaging introduces variability in network size and vessel dimensions, affecting hemodynamic predictions.
View Article and Find Full Text PDFDynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) can be used as a non-invasive method for the assessment of myocardial perfusion. The acquired images can be utilised to analyse the spatial extent and severity of myocardial ischaemia (regions with impaired microvascular blood flow). In the present paper, we propose a novel generalisable spatio-temporal hierarchical Bayesian model (GST-HBM) to automate the detection of ischaemic lesions and improve the in silico prediction accuracy by systematically integrating spatio-temporal context information.
View Article and Find Full Text PDFAdvances in statistics mean that it is now possible to tackle increasingly sophisticated observation processes. The intricacies and ambitious scale of modern data collection techniques mean that this is now essential. Methodological research to make inference about the biological process while accounting for the observation process has expanded dramatically, but solutions are often presented in field-specific terms, limiting our ability to identify commonalities between methods.
View Article and Find Full Text PDFSurface antigens of pathogens are commonly targeted by vaccine-elicited antibodies but antigenic variability, notably in RNA viruses such as influenza, HIV and SARS-CoV-2, pose challenges for control by vaccination. For example, influenza A(H3N2) entered the human population in 1968 causing a pandemic and has since been monitored, along with other seasonal influenza viruses, for the emergence of antigenic drift variants through intensive global surveillance and laboratory characterisation. Statistical models of the relationship between genetic differences among viruses and their antigenic similarity provide useful information to inform vaccine development, though accurate identification of causative mutations is complicated by highly correlated genetic signals that arise due to the evolutionary process.
View Article and Find Full Text PDFIn this investigation, an image-based method has been developed to estimate the volume of the left ventricular cavity using cardiac magnetic resonance (CMR) imaging data. Deep learning and Gaussian processes have been applied to bring the estimations closer to the cavity volumes manually extracted. CMR data from 339 patients and healthy volunteers have been used to train a stepwise regression model that can estimate the volume of the left ventricular cavity at the beginning and end of diastole.
View Article and Find Full Text PDFInferring the underlying processes that drive collective behaviour in biological and social systems is a significant statistical and computational challenge. While simulation models have been successful in qualitatively capturing many of the phenomena observed in these systems in a variety of domains, formally fitting these models to data remains intractable. Recently, approximate Bayesian computation (ABC) has been shown to be an effective approach to inference if the likelihood function for a model is unavailable.
View Article and Find Full Text PDFUnderstanding the spatial dynamics of animal movement is an essential component of maintaining ecological connectivity, conserving key habitats, and mitigating the impacts of anthropogenic disturbance. Altered movement and migratory patterns are often an early warning sign of the effects of environmental disturbance, and a precursor to population declines. Here, we present a hierarchical Bayesian framework based on Gaussian processes for analysing the spatial characteristics of animal movement.
View Article and Find Full Text PDFDiagnostics for COVID-19 detection are limited in many settings. Syndromic surveillance is often the only means to identify cases but lacks specificity. Rapid antigen testing is inexpensive and easy-to-deploy but can lack sensitivity.
View Article and Find Full Text PDFBiomech Model Mechanobiol
June 2022
Personalized computational cardiac models are considered to be a unique and powerful tool in modern cardiology, integrating the knowledge of physiology, pathology and fundamental laws of mechanics in one framework. They have the potential to improve risk prediction in cardiac patients and assist in the development of new treatments. However, in order to use these models for clinical decision support, it is important that both the impact of model parameter perturbations on the predicted quantities of interest as well as the uncertainty of parameter estimation are properly quantified, where the first task is a priori in nature (meaning independent of any specific clinical data), while the second task is carried out a posteriori (meaning after specific clinical data have been obtained).
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
May 2022
We consider parameter inference in cardio-mechanic models of the left ventricle, in particular the one based on the Holtzapfel-Ogden (HO) constitutive law, using clinical in vivo data. The equations underlying these models do not admit closed form solutions and hence need to be solved numerically. These numerical procedures are computationally expensive making computational run times associated with numerical optimisation or sampling excessive for the uptake of the models in the clinical practice.
View Article and Find Full Text PDFCombining biomechanical modelling of left ventricular (LV) function and dysfunction with cardiac magnetic resonance (CMR) imaging has the potential to improve the prognosis of patient-specific cardiovascular disease risks. Biomechanical studies of LV function in three dimensions usually rely on a computerized representation of the LV geometry based on finite element discretization, which is essential for numerically simulating in vivo cardiac dynamics. Detailed knowledge of the LV geometry is also relevant for various other clinical applications, such as assessing the LV cavity volume and wall thickness.
View Article and Find Full Text PDFCOVID-19 is responsible for increasing deaths globally. As most people dying with COVID-19 are older with underlying long-term conditions (LTCs), some speculate that YLL are low. We aim to estimate YLL attributable to COVID-19, before and after adjustment for number/type of LTCs, using the limited data available early in the pandemic.
View Article and Find Full Text PDFBackground: In recent years the field of movement ecology has been revolutionized by our ability to collect high-accuracy, fine scale telemetry data from individual animals and groups. This growth in our data collection capacity has led to the development of statistical techniques that integrate telemetry data with random walk models to infer key parameters of the movement dynamics. While much progress has been made in the use of these models, several challenges remain.
View Article and Find Full Text PDFThis study uses Bayesian inference to quantify the uncertainty of model parameters and haemodynamic predictions in a one-dimensional pulmonary circulation model based on an integration of mouse haemodynamic and micro-computed tomography imaging data. We emphasize an often neglected, though important source of uncertainty: in the mathematical model form due to the discrepancy between the model and the reality, and in the measurements due to the wrong noise model (jointly called 'model mismatch'). We demonstrate that minimizing the mean squared error between the measured and the predicted data (the conventional method) in the presence of model mismatch leads to biased and overly confident parameter estimates and haemodynamic predictions.
View Article and Find Full Text PDFThe past few decades have witnessed an explosive synergy between physics and the life sciences. In particular, physical modelling in medicine and physiology is a topical research area. The present work focuses on parameter inference and uncertainty quantification in a 1D fluid-dynamics model for quantitative physiology: the pulmonary blood circulation.
View Article and Find Full Text PDFMicrovascular angina is caused by cardiac small vessel disease, and dysregulation of the endothelin system is implicated. The minor G allele of the non-coding single nucleotide polymorphism (SNP) rs9349379 enhances expression of the endothelin 1 gene in human vascular cells, increasing circulating concentrations of ET-1. The prevalence of this allele is higher in patients with ischemic heart disease.
View Article and Find Full Text PDFDeposition of amyloid in the heart can lead to cardiac dilation and impair its pumping ability. This ultimately leads to heart failure with worsening symptoms of breathlessness and fatigue due to the progressive loss of elasticity of the myocardium. Biomarkers linked to the clinical deterioration can be crucial in developing effective treatments.
View Article and Find Full Text PDFJ R Stat Soc Ser C Appl Stat
November 2019
A central problem in biomechanical studies of personalized human left ventricular modelling is estimating the material properties and biophysical parameters from clinical measurements in a timeframe that is suitable for use within a clinic. Understanding these properties can provide insight into heart function or dysfunction and help to inform personalized medicine. However, finding a solution to the differential equations which mathematically describe the kinematics and dynamics of the myocardium through numerical integration can be computationally expensive.
View Article and Find Full Text PDFUnderstanding how genetic changes allow emerging virus strains to escape the protection afforded by vaccination is vital for the maintenance of effective vaccines. We use structural and phylogenetic differences between pairs of virus strains to identify important antigenic sites on the surface of the influenza A(H1N1) virus through the prediction of haemagglutination inhibition (HI) titre: pairwise measures of the antigenic similarity of virus strains. We propose a sparse hierarchical Bayesian model that can deal with the pairwise structure and inherent experimental variability in the H1N1 data through the introduction of latent variables.
View Article and Find Full Text PDFComputational fluid dynamics (CFD) models are emerging tools for assisting in diagnostic assessment of cardiovascular disease. Recent advances in image segmentation have made subject-specific modelling of the cardiovascular system a feasible task, which is particularly important in the case of pulmonary hypertension, requiring a combination of invasive and non-invasive procedures for diagnosis. Uncertainty in image segmentation propagates to CFD model predictions, making the quantification of segmentation-induced uncertainty crucial for subject-specific models.
View Article and Find Full Text PDFIn recent years, we have witnessed substantial advances in the mathematical modelling of the biomechanical processes underlying the dynamics of the cardiac soft-tissue. Gao et al. (Gao et al.
View Article and Find Full Text PDFA challenging problem in systems biology is the reconstruction of gene regulatory networks from postgenomic data. A variety of reverse engineering methods from machine learning and computational statistics have been proposed in the literature. However, deciding on the best method to adopt for a particular application or data set might be a confusing task.
View Article and Find Full Text PDF