Background: Adipose-derived stem cells represent an interesting option for soft tissue replacement as they are easy to procure and can generate their own blood supply through the production of angiogenic factors. We seeded adipose-derived stem cells on a bioresorbable, biocompatible polymer alginate scaffold to generate autologous soft tissue constructs for repair.
Materials And Methods: We built and optimized an alginate scaffold and tested its biocompatibility using the MTT assay and its hydration capacity.
Marine alginates are well established in wound management. Compared with different modern wound dressings, marine alginates cannot prove superior effects on wound healing. Alginates from bacteria have never been studied for medical applications so far, although the microbial polymer raises expectations for improved binding of wound factors because of its unique O-acetylation.
View Article and Find Full Text PDFMarine alginate fibre dressings are well established in wound management. Alginate fibres can absorb plenty of wound exudate due to their gel forming abilities and ion exchange. Alginates from bacteria have never been studied for medical applications so far, although the microbial polymer raises expectations for improved gelling capacity due to its unique O-acetylation.
View Article and Find Full Text PDFPoor vascularization is the key limitation for long-term acceptance of large three-dimensional (3D) tissue engineering constructs in regenerative medicine. 45S5 Bioglass(®) was investigated given its potential for applications in bone engineering. Since native Bioglass(®) shows insufficient angiogenic properties, we used a collagen coating, to seed human adipose tissue-derived stem cells (hASC) confluently onto 3D 45S5 Bioglass(®)-based scaffolds.
View Article and Find Full Text PDFThe progressive public use of antimicrobial clothes has raised issues concerning skin health. A placebo-controlled side-to-side study was run with antimicrobial clothes versus fabrics of similar structure but minus the antimicrobial activity, to evaluate possible adverse effects on the healthy skin microflora. Sixty volunteers were enrolled.
View Article and Find Full Text PDFDermatophytoses are a widespread problem worldwide. Textiles in contact with infected skin can serve as a carrier for fungus propagation. Hitherto, it is unknown, whether antifungal textiles could contribute in controlling dermatophytes e.
View Article and Find Full Text PDFToxic substances from cigarette smoke can attach to carpets, curtains, clothes or other surfaces and thus may pose risks to affected persons. The phenomenon itself and the potential hazards are discussed controversially, but scientific data are rare. The objective of this study was to examine the potential of textile-bound nicotine for permeation through human skin and to assess the effects of cigarette smoke extracts from clothes on fibroblasts, neurocytes and zebrafish embryos.
View Article and Find Full Text PDFIn the developed countries infections of the feet (tinea pedis, athlete's foot) and nails (onychomycosis) with the anthropophile fungus Trichophyton rubrum are most common. We examined the propagation of dermatophytes before and during domestic laundering. About 10% of the infectious material was transferred from contaminated textiles to sterile textiles during storage in a clothes basket simulation indicating a high infection risk during storage.
View Article and Find Full Text PDFStud Health Technol Inform
March 2005
The background of the development of i-wear for health care and wellness are two actual trends: The wellness trend with its expectation to stay fit and healthy and the increasing life expectancy of the Europeans and the challenges, which are resulting thereof for the medicine and the technology that goes with it. Already in 2040 the amount of people over 60 years in Europe will amount to 40% of the entire population [1,2]. In recent years the co-operation of physicians, biologists, physiologists, engineers for electronics and information technologies and textile scientists has produced a multitude of innovative applications for textiles, especially in the medical and wellness field.
View Article and Find Full Text PDF