Carboxypeptidase U (CPU, TAFIa, CPB2) is a potent attenuator of fibrinolysis that is mainly synthesized by the liver as its inactive precursor proCPU. Aside from its antifibrinolytic properties, evidence exists that CPU can modulate inflammation, thereby regulating communication between coagulation and inflammation. Monocytes and macrophages play a central role in inflammation and interact with coagulation mechanisms resulting in thrombus formation.
View Article and Find Full Text PDFBackground: COVID-19 patients experience several features of dysregulated immune system observed in sepsis. We previously showed a dysregulation of several proline-selective peptidases such as dipeptidyl peptidase 4 (DPP4), fibroblast activation protein alpha (FAP), prolyl oligopeptidase (PREP) and prolylcarboxypeptidase (PRCP) in sepsis. In this study, we investigated whether these peptidases are similarly dysregulated in hospitalized COVID-19 patients.
View Article and Find Full Text PDFStatins (hydroxymethyl-glutaryl-CoA-reductase inhibitors) lower procarboxypeptidase U (proCPU, TAFI, proCPB2). However, it is challenging to prove whether this is a lipid or non-lipid-related pleiotropic effect, since statin treatment decreases cholesterol levels in humans. In apolipoprotein E-deficient mice with a heterozygous mutation in the fibrillin-1 gene (ApoEFbn1), a model of advanced atherosclerosis, statins do not lower cholesterol.
View Article and Find Full Text PDFBackground: Carboxypeptidase U (CPU, CPB2, TAFIa) is a potent attenuator of fibrinolysis. The inhibition of CPU is thus an interesting strategy for improving thrombolysis.
Objectives: The time course of CPU generation and proCPU consumption were assessed in an experimental rat model of acute ischemic stroke (AIS).
Carboxypeptidase U (CPU, CPB2, TAFIa) is a basic carboxypeptidase that is able to attenuate fibrinolysis. The inactive precursor procarboxypeptidase U is converted to its active form by thrombin, the thrombin-thrombomodulin complex or plasmin. The aim of this study was to investigate and characterise the time course of CPU generation in healthy individuals.
View Article and Find Full Text PDFThis review covers carboxypeptidase M (CPM) research that appeared in the literature since 2009. The focus is on aspects that are new or interesting from a clinical perspective. Available research tools are discussed as well as their pitfalls and limitations.
View Article and Find Full Text PDFAlthough the kidney generally has been regarded as an excellent source of carboxypeptidase M (CPM), little is known about its renal-specific expression level and distribution. This study provides a detailed localization of CPM in healthy and diseased human kidneys. The results indicate a broad distribution of CPM along the renal tubular structures in the healthy kidney.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
June 2011
This article introduces a novel assay for the measurement of carboxypeptidase U (CPU) in plasma using the selective CPU substrate Bz-o-cyano-Phe-Arg (N-benzoyl-ortho-cyano-phenylalanyl-arginine), thereby limiting the interference of plasma carboxypeptidase N (CPN) as well as the intrinsic activity of procarboxypeptidase U (proCPU). A limit of detection of 0.05 U/L (10 pM) was reached.
View Article and Find Full Text PDFAlthough the maintenance of precise balance between coagulation and fibrinolysis is of utmost importance for normal haemostasis, until recently these two systems were considered as completely separate mechanisms involved in the process of formation and dissolution of blood clot. Thrombin activatable fibrinolysis inhibitor (TAFI) is a recently described attenuator of the fibrinolytic rate and is considered to be the molecular link between coagulation and fibrinolysis. TAFI circulates in plasma as an inactive precursor and its conversion in active enzyme (TAFIa) occurs by the action of thrombin or plasmin, but most efficiently by thrombin in the presence of its cofactor thrombomodulin.
View Article and Find Full Text PDFTo date, several assays for procarboxypeptidase U (proCPU) determination exist, all having their own inherent disadvantages and advantages. A drawback of activity-based assays is the interference of the constitutively active carboxypeptidase N (CPN) in plasma. Recent screening of Bz-Xaa-Arg peptides with modified aromatic amino acids at the P1 position revealed a selective CPU substrate, N-benzoyl-ortho-cyano-phenylalanyl-arginine (Bz-o-cyano-Phe-Arg), which will allow straightforward determination of proCPU in plasma.
View Article and Find Full Text PDFIntroduction: It is considered that high plasma levels of procarboxypeptidase U (proCPU or TAFI) can promote the development of thrombosis, but data comparing proCPU levels in thrombophilia carriers and healthy subjects are rather scarce. Moreover, the results of previous studies on the risk of thrombosis related to high proCPU concentration in this population were not consistent. Although the 325 polymorphism of proCPU has a significant effect on the CPU half-life, it's influence on the risk of thrombosis or spontaneous pregnancy loss in carriers of hereditary thrombophilia is not clear.
View Article and Find Full Text PDFIntroduction: Thrombolytic therapy improves clinical outcome in patients with acute ischemic stroke but is compromised by symptomatic intracranial hemorrhage and an unpredictable therapeutic response. In vitro and in vivo data suggest that activation of procarboxypeptidase U (proCPU) inhibits fibrinolysis.
Aims: To investigate whether the extent of proCPU activation is related to efficacy and safety of thrombolytic therapy in ischemic stroke patients.