Identifying immune correlates of risk following COVID-19 vaccine boosters has become paramount as a result of the challenges in generating additional efficacy data. The trial data described here was collected in the United States, with a large part of the study conduct coinciding with the emergence of the SARS-CoV-2 Omicron BA.1 variant.
View Article and Find Full Text PDFCOVID-19 vaccine boosters may optimize durability of protection against variants of concern (VOCs). In this randomized, double-blind, phase 2 trial, participants received 3 different dose levels of an Ad26.COV2.
View Article and Find Full Text PDFWithout clinical efficacy data, vaccine protective effect may be extrapolated from animals to humans using an immunologic marker that correlates with protection in animals. This immunobridging approach was used for the two-dose Ebola vaccine regimen Ad26.ZEBOV, MVA-BN-Filo.
View Article and Find Full Text PDFBackground: The Pediatric Respiratory Syncytial Virus Electronic Severity and Outcome Rating System (PRESORS) was developed to assess the severity of respiratory syncytial virus (RSV) infection in children. Because young children cannot report how they feel or function, ratings are based on observations by the child's caregiver (Observer-Reported Outcome questionnaire [ObsRO]) and clinician (Clinician-Reported Outcome questionnaire [ClinRO]). This prospective study aimed to evaluate the psychometric properties of the PRESORS.
View Article and Find Full Text PDFThis secondary analysis of the phase 3 ENSEMBLE trial (NCT04505722) assessed the impact of preexisting humoral immunity to adenovirus 26 (Ad26) on the immunogenicity of Ad26.COV2.S-elicited severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibody levels in 380 participants in Brazil, South Africa, and the United States.
View Article and Find Full Text PDFSARS-CoV-2 Spike-specific binding and neutralizing antibodies, elicited either by natural infection or vaccination, have emerged as potential correlates of protection. An important question, however, is whether vaccine-elicited antibodies in humans provide direct, functional protection from SARS-CoV-2 infection and disease. In this study, we explored directly the protective efficacy of human antibodies elicited by Ad26.
View Article and Find Full Text PDFBackground: We investigated safety, tolerability, and immunogenicity of the heterologous 2-dose Ebola vaccination regimen in healthy and HIV-infected adults with different intervals between Ebola vaccinations.
Methods And Findings: In this randomised, observer-blind, placebo-controlled Phase II trial, 668 healthy 18- to 70-year-olds and 142 HIV-infected 18- to 50-year-olds were enrolled from 1 site in Kenya and 2 sites each in Burkina Faso, Cote d'Ivoire, and Uganda. Participants received intramuscular Ad26.
Background: The Ebola epidemics in west Africa and the Democratic Republic of the Congo highlight an urgent need for safe and effective vaccines to prevent Ebola virus disease. We aimed to assess the safety and long-term immunogenicity of a two-dose heterologous vaccine regimen, comprising the adenovirus type 26 vector-based vaccine encoding the Ebola virus glycoprotein (Ad26.ZEBOV) and the modified vaccinia Ankara vector-based vaccine, encoding glycoproteins from Ebola virus, Sudan virus, and Marburg virus, and the nucleoprotein from the Tai Forest virus (MVA-BN-Filo), in Sierra Leone, a country previously affected by Ebola.
View Article and Find Full Text PDFBackground: Children account for a substantial proportion of cases and deaths from Ebola virus disease. We aimed to assess the safety and immunogenicity of a two-dose heterologous vaccine regimen, comprising the adenovirus type 26 vector-based vaccine encoding the Ebola virus glycoprotein (Ad26.ZEBOV) and the modified vaccinia Ankara vector-based vaccine, encoding glycoproteins from the Ebola virus, Sudan virus, and Marburg virus, and the nucleoprotein from the Tai Forest virus (MVA-BN-Filo), in a paediatric population in Sierra Leone.
View Article and Find Full Text PDFInterim immunogenicity and efficacy data for the Ad26.COV2.S vaccine for COVID-19 have recently been reported .
View Article and Find Full Text PDFThe Ad26.COV2.S vaccine has demonstrated clinical efficacy against symptomatic COVID-19, including against the B.
View Article and Find Full Text PDFImportance: Control of the global COVID-19 pandemic will require the development and deployment of safe and effective vaccines.
Objective: To evaluate the immunogenicity of the Ad26.COV2.
Replication-incompetent adenoviral vectors have been under investigation as a platform to carry a variety of transgenes, and express them as a basis for vaccine development. A replication-incompetent adenoviral vector based on human adenovirus type 26 (Ad26) has been evaluated in several clinical trials. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety and features of recombinant viral vector vaccines.
View Article and Find Full Text PDFBackground: Zika virus (ZIKV) may cause severe congenital disease after maternal-fetal transmission. No vaccine is currently available.
Objective: To assess the safety and immunogenicity of Ad26.
Background: Efficacious vaccines are urgently needed to contain the ongoing coronavirus disease 2019 (Covid-19) pandemic of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A candidate vaccine, Ad26.COV2.
View Article and Find Full Text PDFBackground: Malaria remains a major global public health concern, especially in sub-Saharan Africa. The RTS,S/AS01 malaria candidate vaccine was reviewed by the European Medicines Agency and received a positive scientific opinion; WHO subsequently recommended pilot implementation in sub-Saharan African countries. Because malaria and HIV overlap geographically, HIV-infected children should be considered for RTS,S/AS01 vaccination.
View Article and Find Full Text PDFMethods: In an observer blind, phase 2 trial, 55 adults were randomized to receive one dose of Ad35.CS.01 vaccine followed by two doses of RTS,S/AS01 (ARR-group) or three doses of RTS,S/AS01 (RRR-group) at months 0, 1, 2 followed by controlled human malaria infection.
View Article and Find Full Text PDF