Publications by authors named "Dirk Grijpma"

Hybrid hydrogel networks were prepared from recombinant human-like collagen (rh-collagen) and poly(trimethylene carbonate-co-ε-caprolactone) (P (TMC-co-ε-CL)) to overcome the mechanical and bioactivity limitations associated with the respective individual networks. Both polymers were functionalised with methacrylic anhydride to yield photo-crosslinkable materials. Porous hybrid networks of different compositions were prepared by photo-crosslinking frozen mixtures of solutions of the functionalized polymers in acidified DMSO.

View Article and Find Full Text PDF

Immunoregulatory polysaccharides from probiotic bacteria have potential in biomedical engineering. Here, a negatively charged exopolysaccharide from with confirmed immunoregulatory activity (EPS624) was applied in multilayered polyelectrolyte coatings with positively charged chitosan. EPS624 and coatings (1, 5, and 10 layers and alginate-substituted) were characterized by the zeta potential, dynamic light scattering, size exclusion chromatography, scanning electron microscopy, and atomic force microscopy.

View Article and Find Full Text PDF

Three-armed poly(trimethylene carbonate) (PTMC) and poly(trimethylene carbonate-co-Ɛ-caprolactone) (P(TMC-co-ε-CL)) macromers with molecular weights of approximately 30 kg mol are synthesized by ring-opening polymerization and subsequent functionalization with methacrylic anhydride. Networks are then prepared by photo-crosslinking. To investigate the in vitro and in vivo degradation properties of these photo-crosslinked networks and assess the effect of ε-caprolactone content on the degradation properties, PTMC networks, and copolymer networks with two different TMC:ε-CL ratios are prepared.

View Article and Find Full Text PDF

Methacrylated gelatin (GelMA) has been intensively studied as a 3D printable scaffold material in tissue regeneration fields, which can be attributed to its well-known biological functions. However, the long-term stability of photo-crosslinked GelMA scaffolds is hampered by a combination of its fast degradation in the presence of collagenase and the loss of physical crosslinks at higher temperatures. To increase the longer-term shape stability of printed scaffolds, a mixture of GelMA and tyramine-conjugated 8-arm PEG (8PEGTA) was used to create filaments composed of an interpenetrating network (IPN).

View Article and Find Full Text PDF

To improve the mechanical performance of hyaluronic acid (HA)-based hydrogels, we prepared novel hybrid hydrogels consisting of hydrophilic HA and hydrophobic poly(trimethylene carbonate) (PTMC). Both polymers were functionalized with methacrylic anhydride, yielding HAMA and PTMC-tMA. Hybrid networks with different ratios of PTMC-tMA:HAMA were prepared by photo-cross-linking, using DMSO pH 2.

View Article and Find Full Text PDF

Applying biodegradable osteosyntheses avoids the disadvantages of titanium osteosyntheses. However, foreign-body reactions remain a major concern and evidence of complete resorption is lacking. This study compared the physico-chemical properties, histological response and radiographs of four copolymeric biodegradable osteosynthesis systems in a goat model with 48-months follow-up.

View Article and Find Full Text PDF

As viruses with high specificity for their bacterial hosts, bacteriophages (phages) are an attractive means to eradicate bacteria, and their potential has been recognized by a broad range of industries. Against a background of increasing rates of antibiotic resistance in pathogenic bacteria, bacteriophages have received much attention as a possible "last-resort" strategy to treat infections. The use of bacteriophages in human patients is limited by their sensitivity to acidic pH, enzymatic attack and short serum half-life.

View Article and Find Full Text PDF

The introduction of two-photon polymerization (2PP) to the field of tissue engineering and regenerative medicine (TERM) has led to great expectations for the production of scaffolds with an unprecedented degree of complexity and tailorable architecture. Unfortunately, resolution and size are usually mutually exclusive when using 2PP, resulting in a lack of highly-detailed scaffolds with a relevant size for clinical application. Through the combination of using a highly reactive photopolymer and optimizing key printing parameters, we propose for the first time a biodegradable and biocompatible poly(trimethylene-carbonate) (PTMC)-based scaffold of large size (18 × 18 × 0.

View Article and Find Full Text PDF

Bone infection is a feared complication for patients with surgically fixed bone fractures and local antibiotic delivery is important in prophylaxis and treatment of these infections. Recent studies indicated that can penetrate bone tissue through micron-sized canaliculi and evade systemic and currently available local antibiotic treatments. Targeting bacteria within the bone requires highly efficient delivery of antimicrobials to the infected bone tissue.

View Article and Find Full Text PDF

A new generation of sophisticated tissue engineering scaffolds are developed using the periodicity of trigonometric equations to generate triply periodic minimal surfaces (TPMS). TPMS architectures display minimal surface energy that induce typical pore features and surface curvatures. Here we described a series of TPMS geometries and developed a procedure to build such scaffolds by stereolithography using biocompatible and biodegradable photosensitive resins.

View Article and Find Full Text PDF

The aim of this work was to fabricate microporous poly(trimethylene carbonate) (PTMC) vascular structures by stereolithography (SLA) for applications in tissue engineering and organ models. Leachable CaCO particles with an average size of 0.56 μm were used as porogens.

View Article and Find Full Text PDF

Objective: Bone infections are challenging to treat because of limited capability of systemic antibiotics to accumulate at the bone site. To enhance therapeutic action, systemic treatments are commonly combined with local antibiotic-loaded materials. Nevertheless, available drug carriers have undesirable properties, including inappropriate antibiotic release profiles and nonbiodegradability.

View Article and Find Full Text PDF

Tissue engineering repair of annulus fibrosus (AF) defects has the potential to prevent disability and pain from intervertebral disc (IVD) herniation and its progression to degeneration. Clinical translation of AF repair methods requires assessment in long-term large animal models. An ovine AF injury model was developed using cervical spinal levels and a biopsy-type AF defect to assess composite tissue engineering repair in 1-month and 12-month studies.

View Article and Find Full Text PDF

The orbital floor (OF) is an anatomical location in the craniomaxillofacial (CMF) region known to be highly variable in shape and size. When fractured, implants commonly consisting of titanium meshes are customized by plying and crude hand-shaping. Nevertheless, more precise customized synthetic grafts are needed to meticulously reconstruct the patients' OF anatomy with better fidelity.

View Article and Find Full Text PDF

Microfluidic droplet generators excel in generating monodisperse micrometer-sized droplets and particles. However, the low throughput of conventional droplet generators hinders their clinical and industrial translation. Current approaches to parallelize microdevices are challenged by the two-dimensional nature of the standard fabrication methods.

View Article and Find Full Text PDF

For the study of polymer networks, having access to polymer networks with a controlled and well-defined microscopic network structure is of great importance. However, typically, such networks are difficult to synthesize. In this work, a simple, effective, and widely applicable method is presented for synthesizing polymer networks with a well-defined network structure.

View Article and Find Full Text PDF

Graphene-graft-polymer has been used to improve the compatibility between graphene and a polymer matrix, and to further enhance electrical, mechanical and biological properties of polymer/graphene composites. In this study, poly(trimethylene carbonate) (PTMC) was successfully grafted onto graphene surface via 'grafting from' method. Reduced graphene oxide (rGO) initiator was synthesized by azido ethanol reaction with graphene oxide (GO) at high temperature.

View Article and Find Full Text PDF

One of the key challenges for neural tissue engineering is to exploit functional materials to guide and support nerve regeneration. Currently, reduced graphene oxide (rGO), which is well-known for its unique electrical and mechanical properties, has been incorporated into biocompatible polymers to manufacture functional scaffolds for nerve tissue engineering. However, rGO has poor dispersity in polymer matrix, which limits its further application.

View Article and Find Full Text PDF

Biomaterial-associated infection (BAI) is a major cause of the failure of biomaterials/medical devices. Staphylococcus aureus is one of the major pathogens in BAI. Current experimental BAI mammalian animal models such as mouse models are costly and time-consuming, and therefore not suitable for high throughput analysis.

View Article and Find Full Text PDF

Bone defect repair is a challenging clinical problem in musculoskeletal system, especially in orthopaedic disorders such as steroid associated osteonecrosis (SAON). Magnesium (Mg) as a biodegradable metal with properly mechanical properties has been investigating for a long history. In this study, Mg powder, poly (lactide-co-glycolide) (PLGA), β-tricalcium phosphate (β-TCP) were the elements to formulate a novel porous PLGA/TCP/Mg (PTM) scaffolds using low temperature rapid prototyping (LT-RP) technology.

View Article and Find Full Text PDF

Stereolithography-assisted fabrication of hydrogels of carboxybetaine methacrylamide (CBMAA) and a α,ω-methacrylate poly(d,l-lactide-block-ethylene glycol-block- d,l-lactide) (MA-PDLLA-PEG-PDLLA-MA) telechelic triblock macromer is presented. This technique allows printing complex structures with gyroid interconnected porosity possessing extremely high specific area. Hydrogels are characterized by infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and laser scanning confocal microscopy (LSCM).

View Article and Find Full Text PDF

Although synthetic polymers may have suitable physicochemical properties for biomedical applications, biological properties are generally lacking. Poly(ethylene glycol) (PEG) is a frequently used polymer for the preparation of hydrogels. Due to its hydrophilic character, however, cellular interactions with PEG hydrogels are minimal or absent.

View Article and Find Full Text PDF

Photo-crosslinked synthetic biodegradable polymer networks are highly interesting materials for utilization in biomedical applications such as drug delivery, cell encapsulation and tissue engineering scaffolds. Varying the architecture, chemistry, degree of functionalization and molecular weight of the macromer precursor molecules results in networks with a wide range of physical- and mechanical properties, crosslinking densities, degradation characteristics and thus in potential applications. Photo-crosslinked networks can easily be prepared and have the possibility to entrap a wide range of (biologically active) substances and cells.

View Article and Find Full Text PDF

Novel tough hydrogel materials are required for 3D-printing applications. Here, a series of thermoplastic polyurethanes (TPUs) based on poly(ɛ-caprolactone)--poly(ethylene glycol)--poly(ɛ-caprolactone) (PCL--PEG--PCL) triblock copolymers and hexamethylene diisocyanate (HDI) were developed with PEG contents varying between 30 and 70 mol%. These showed excellent mechanical properties not only when dry, but also when hydrated: TPUs prepared from PCL--PEG--PCL with PEG of Mn 6 kg/mol (PCL₇-PEG₆-PCL₇) took up 122 wt.

View Article and Find Full Text PDF

Background: Poly(trimethylene carbonate) (PTMC) has wide biomedical applications in the field of tissue engineering, due to its biocompatibility and biodegradability features. Its common manufacturing involves photofabrication, such as stereolithography (SLA), which allows the fabrication of complex and controlled structures. Despite the great potential of SLA-fabricated scaffolds, very few examples of PTMC-based drug delivery systems fabricated using photo-fabrication can be found ascribed to light-triggered therapeutics instability, degradation, side reaction, binding to the macromers, etc.

View Article and Find Full Text PDF