Publications by authors named "Dirk Geerts"

Study Question: Can pregnancy outcomes following fresh elective single embryo transfer (eSET) in gonadotropin-releasing hormone (GnRH) antagonist protocols increase using a gonadotropin (Gn) step-down approach with cessation of GnRH antagonist on the day of hCG administration (hCG day) in patients with normal ovarian response?

Summary Answer: The modified GnRH antagonist protocol using the Gn step-down approach and cessation of GnRH antagonist on the hCG day is effective in improving live birth rates (LBRs) per fresh eSET cycle.

What Is Known Already: Currently, there is no consensus on optimal GnRH antagonist regimens. Studies have shown that fresh GnRH antagonist cycles result in poorer pregnancy outcomes than the long GnRH agonist (GnRHa) protocol.

View Article and Find Full Text PDF

The eukaryotic translation initiation factor 5A1 (eIF5A1) and 5A2 (eIF5A2) are important proteins in a variety of physiological and pathophysiological processes and their function has been linked to neurodevelopmental disorders, cancer, and viral infections. Here, we report two new genome-edited mouse models, generated using a CRISPR-Cas9 approach, in which the amino acid residue lysine 50 is replaced with arginine 50 (K50R) in eIF5A1 or in the closely related eIF5A2 protein. This mutation prevents the spermidine-dependent post-translational formation of hypusine, a unique lysine derivative that is necessary for activation of eIF5A1 and eIF5A2.

View Article and Find Full Text PDF

Background: Esophageal squamous cell carcinoma (ESCC) is one of the deadliest cancers worldwide. Overexpression of EMT master transcription factors can promote differentiated cells to undergo cancer reprogramming processes and acquire a stem cell-like status.

Methods: The KYSE-30 and YM-1 ESCC cell lines were transduced with retroviruses expressing TWIST1 or GFP and analyzed by quantitative reverse transcription PCR (qRT-PCR), chromatin immunoprecipitation (ChIP), and immunostaining to investigate the correlation between TWIST1 and stemness markers expression.

View Article and Find Full Text PDF

The epigenetic regulator lysine specific demethylase 1 (LSD1), a MYCN cofactor, cooperatively silences MYCN suppressor genes. Furthermore, LSD1 has been correlated with adverse effects in neuroblastic tumors by propagating an undifferentiated, malignant phenotype. We observed that high LSD1 mRNA expression in MYCN-expressing neuroblastoma (NB) correlated with poor prognosis, implicating LSD1 as an oncogenic accomplice in high-grade NB.

View Article and Find Full Text PDF

Strategies to boost anti-tumor immunity are urgently needed to treat therapy-resistant late-stage cancers, including colorectal cancers (CRCs). Cytokine stimulation and genetic modifications with chimeric antigen receptors (CAR) represent promising strategies to more specifically redirect anti-tumor activities of effector cells like natural killer (NK) and T cells. However, these approaches are critically dependent on tumor-specific antigens while circumventing the suppressive power of the solid tumor microenvironment and avoiding off-tumor toxicities.

View Article and Find Full Text PDF

More than 25 years ago, the first literature records mentioned HOXA1 expression in human breast cancer. A few years later, HOXA1 was confirmed as a proper oncogene in mammary tissue. In the following two decades, molecular data about the mode of action of the HOXA1 protein, the factors contributing to activate and maintain HOXA1 gene expression and the identity of its target genes have accumulated and provide a wider view on the association of this transcription factor to breast oncogenesis.

View Article and Find Full Text PDF

Endometrial cancer (EC) is a common and deadly cancer in women and novel therapeutic approaches are urgently needed. Polyamines (putrescine, spermidine, spermine) are critical for mammalian cell proliferation and MYC coordinately regulates polyamine metabolism through ornithine decarboxylase (ODC). ODC is a MYC target gene and rate-limiting enzyme of polyamine biosynthesis and the FDA-approved anti-protozoan drug α-difluoromethylornithine (DFMO) inhibits ODC activity and induces polyamine depletion that leads to tumour growth arrest.

View Article and Find Full Text PDF
Article Synopsis
  • Von Willebrand factor (VWF) is a crucial protein for blood clotting, produced mainly by endothelial cells and stored in specialized organelles called Weibel-Palade bodies (WPB).
  • The research revealed that a specific SNARE protein, Syntaxin 5 (STX5), is essential for the proper elongation and function of WPBs, affecting VWF secretion.
  • STX5 knockdown experiments showed that its depletion leads to fragmented Golgi structures and shorter WPBs, resulting in lower VWF levels and impaired secretion in endothelial cells.
View Article and Find Full Text PDF

Pancreatic cancer is the fourth leading cause of cancer death. Existing therapies only moderately improve pancreatic ductal adenocarcinoma (PDAC) patient prognosis. The present study investigates the importance of the polyamine metabolism in the pancreatic tumor microenvironment.

View Article and Find Full Text PDF

Breast cancer is a heterogeneous disease and the leading cause of female cancer mortality worldwide. About 70% of breast cancers express ERα. HOX proteins are master regulators of embryo development which have emerged as being important players in oncogenesis.

View Article and Find Full Text PDF

Sprouting angiogenesis is key to many pathophysiological conditions, and is strongly regulated by vascular endothelial growth factor (VEGF) signaling through VEGF receptor 2 (VEGFR2). Here we report that the early endosomal GTPase Rab5C and its activator RIN2 prevent lysosomal routing and degradation of VEGF-bound, internalized VEGFR2 in human endothelial cells. Stabilization of endosomal VEGFR2 levels by RIN2/Rab5C is crucial for VEGF signaling through the ERK and PI3-K pathways, the expression of immediate VEGF target genes, as well as specification of angiogenic 'tip' and 'stalk' cell phenotypes and cell sprouting.

View Article and Find Full Text PDF

Electronic pacemakers still face major shortcomings that are largely intrinsic to their hardware-based design. Radical improvements can potentially be generated by gene or cell therapy-based biological pacemakers. Our previous work identified adenoviral gene transfer of Hcn2 and SkM1, encoding a "funny current" and skeletal fast sodium current, respectively, as a potent combination to induce short-term biological pacing in dogs with atrioventricular block.

View Article and Find Full Text PDF

Natural Killer (NK) cells are unique immune cells capable of efficient killing of infected and transformed cells. Indeed, NK cell-based therapies induced response against hematological malignancies in the absence of adverse toxicity in clinical trials. Nevertheless, adoptive NK cell therapies are reported to have exhibited poor outcome against many solid tumors.

View Article and Find Full Text PDF

Ras mutations are present in only a subset of sporadic human cutaneous squamous cell carcinomas (cSCC) even though Ras is activated in most. This suggests that other mechanisms of Ras activation play a role in the disease. The aberrant expression of RasGRP1, a guanyl nucleotide exchange factor for Ras, is critical for mouse cSCC development through its ability to increase Ras activity.

View Article and Find Full Text PDF

Study Question: Do cumulative live birth rates (CLBRs) after one complete ART cycle differ between the three commonly used controlled ovarian stimulation (COS) protocols (GnRH antagonist, depot GnRHa (GnRH agonist) and long GnRHa) in normal responders undergoing IVF/ICSI?

Summary Answer: There were similar CLBRs between the GnRH antagonist, depot GnRHa and long GnRHa protocols.

What Is Known Already: There is no consensus on which COS protocol is the most optimal in women with normal ovarian response. The CLBR provides the final success rate after one complete ART cycle, including the fresh and all subsequent frozen-thawed embryo transfer (ET) cycles.

View Article and Find Full Text PDF

Von Willebrand factor (VWF) is a multimeric hemostatic protein that is synthesized in endothelial cells, where it is stored for secretion in elongated secretory organelles, so-called Weibel-Palade bodies (WPBs). Hemostatic activity of VWF is strongly tied to WPB length, but how endothelial cells control the dimensions of their WPBs is unclear. In this study we used a targeted shRNA screen to identify the longin-SNARE Sec22b as a novel determinant of WPB size and VWF trafficking.

View Article and Find Full Text PDF

Osteoprotegerin (OPG) is a secreted member of the Tumor Necrosis Factor (TNF) receptor superfamily (TNFRSF11B), that was first characterized and named for its protective role in bone remodeling. In this context, OPG binds to another TNF superfamily member Receptor Activator of NF-kappaB Ligand (RANKL; TNFSF11) and blocks interaction with RANK (TNFRSF11A), preventing RANKL/RANK stimulation of osteoclast maturation, and bone breakdown. Further studies revealed that OPG protein is also expressed by tumor cells and led to investigation of the role of OPG in tumor biology.

View Article and Find Full Text PDF

Dysfunction of the blood-brain barrier (BBB) contributes significantly to the pathogenesis of several neuroinflammatory diseases, including multiple sclerosis (MS). Potential players that regulate BBB function are the liver X receptors (LXRs), which are ligand activated transcription factors comprising two isoforms, LXRα, and LXRβ. However, the role of LXRα and LXRβ in regulating BBB (dys)function during neuroinflammation remains unclear, as well as their individual involvement.

View Article and Find Full Text PDF

MEIS transcription factors are key regulators of embryonic development and cancer. Research on MEIS genes in the embryo and in stem cell systems has revealed novel and surprising mechanisms by which these proteins control gene expression. This Primer summarizes recent findings about MEIS protein activity and regulation in development, and discusses new insights into the role of MEIS genes in disease, focusing on the pathogenesis of solid cancers.

View Article and Find Full Text PDF

Primary human airway epithelial cell (hAEC) cultures represent a universal platform to propagate respiratory viruses and characterize their host interactions in authentic target cells. To further elucidate specific interactions between human respiratory viruses and important host factors in the airway epithelium, it is important to make hAEC cultures amenable to genetic modification. However, the short and finite lifespan of primary cells in cell culture creates a bottleneck for the genetic modification of these cultures.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) has a major role in maintaining brain homeostasis through the specialized function of brain endothelial cells (BECs). Inflammation of the BECs and loss of their neuroprotective properties is associated with several neurological disorders, including the chronic neuro-inflammatory disorder multiple sclerosis (MS). Yet, the underlying mechanisms of a defective BBB in MS remain largely unknown.

View Article and Find Full Text PDF

Neuroblastoma (NB) is a tumor arising from the sympathetic nervous system during infancy and early childhood. High-risk patients who relapse often fail to respond to further therapy, which results in 5-year survival rate for this patient group below 5%. Therefore, there continues to be an urgent need for innovative treatments.

View Article and Find Full Text PDF

Sustained pacemaker function is a challenge in biological pacemaker engineering. Human cardiomyocyte progenitor cells (CMPCs) have exhibited extended survival in the heart after transplantation. We studied whether lentivirally transduced CMPCs that express the pacemaker current (encoded by ) can be used as functional gene delivery vehicle in biological pacing.

View Article and Find Full Text PDF

This paper is in recognition of the 100th birthday of Dr. Herbert Tabor, a true pioneer in the polyamine field for over 70 years, who served as the editor-in-chief of the from 1971 to 2010. We review current knowledge of MYC proteins (c-MYC, MYCN, and MYCL) and focus on ornithine decarboxylase 1 (), an important gene target of MYC, which encodes the sentinel, rate-limiting enzyme in polyamine biosynthesis.

View Article and Find Full Text PDF