This study was conducted to evaluate the properties of lightweight sandwich panels made from low diameter bamboo particles, Phyllostachys Bambusides collected from Gilan province, Iran, as core layer, combined with thin wall bamboo strips as faces. The effects of three individual variables such as density of core layer (350-550 kg/m), resin consumption in core layer (7.5-9.
View Article and Find Full Text PDFMycelium-bound composites (MBCs) are materials obtained by growing fungi on a ligno-cellulosic substrate which have various applications in packaging, furniture, and construction industries. MBCs are particularly interesting as they are sustainable materials that can integrate into a circular economy model. Indeed, they can be subsequently grown, used, degraded, and re-grown.
View Article and Find Full Text PDFThe demand for building materials has been constantly increasing, which leads to excessive energy consumption for their provision. The looming environmental consequences have triggered the search for sustainable alternatives. Mycelium, as a rapidly renewable, low-carbon natural material that can withstand compressive forces and has inherent acoustic and fire-resistance properties, could be a potential solution to this problem.
View Article and Find Full Text PDFThe transition from a linear to a circular economy is urgently needed to mitigate environmental impacts and loss of biodiversity. Among the many potential solutions, the development of entirely natural-based materials derived from waste is promising. One such material is mycelium-bound composites obtained from the growth of fungi onto solid lignocellulosic substrates, which find applications such as insulating foams, textiles, packaging, etc.
View Article and Find Full Text PDFMycelium, as the root of fungi, is composed of filamentous strands of fine hyphae that bind discrete substrate particles into a block material. With advanced processing, dense mycelium-bound composites (DMCs) resembling commercial particleboards can be formed. However, their mechanical properties and performance under the working conditions of particleboards are unknown.
View Article and Find Full Text PDFReinforced concrete is the most widely used building material in history. However, alternative natural and synthetic materials are being investigated for reinforcing concrete structures, given the limited availability of steel in developing countries, the rising costs of steel as the main reinforcement material, the amount of energy required by the production of steel, and the sensitivity of steel to corrosion. This paper reports on a unique use of bamboo as a sustainable alternative to synthetic fibers for production of bamboo fiber-reinforced polymer composite as reinforcement for structural-concrete beams.
View Article and Find Full Text PDFBiomimetics (Basel)
August 2019
The article at hand follows the understanding that future cities cannot be built the same way as existing ones, inducing a radical paradigm shift in how we produce and use materials for the construction of our habitat in the 21st century. In search of a methodology for an integrated, holistic, and interdisciplinary development of such new materials and construction technologies, the chair of Sustainable Construction at KIT Karlsruhe proposes the concept of "prototypological" research. Coined through joining the terms "prototype" and "typology", prototypology represents a full-scale application, that is an experiment and proof in itself to effectively and holistically discover all connected aspects and address unknowns of a specific question, yet at the same time is part of a bigger and systematic test series of such different typologies with similar characteristics, yet varying parameters.
View Article and Find Full Text PDF