Statistically efficient processing schemes focus the resources of a signal processing system on the range of statistically probable signals. Relying on the statistical properties of retinal motion signals during ego-motion we propose a nonlinear processing scheme for retinal flow. It maximizes the mutual information between the visual input and its neural representation, and distributes the processing load uniformly over the neural resources.
View Article and Find Full Text PDFImage analysis in the visual system is well adapted to the statistics of natural scenes. Investigations of natural image statistics have so far mainly focused on static features. The present study is dedicated to the measurement and the analysis of the statistics of optic flow generated on the retina during locomotion through natural environments.
View Article and Find Full Text PDFEye movements affect object localization and object recognition. Around saccade onset, briefly flashed stimuli appear compressed towards the saccade target, receptive fields dynamically change position, and the recognition of objects near the saccade target is improved. These effects have been attributed to different mechanisms.
View Article and Find Full Text PDF