Publications by authors named "Dirk Brehmer"

The mutation V600E in B-Raf leads to mitogen activated protein kinase (MAPK) pathway activation, uncontrolled cell proliferation, and tumorigenesis. ATP competitive type I B-Raf inhibitors, such as vemurafenib (1) and PLX4720 (4) efficiently block the MAPK pathways in B-Raf mutant cells, however these inhibitors induce conformational changes in the wild type B-Raf (B-Raf) kinase domain leading to heterodimerization with C-Raf, causing paradoxical hyperactivation of the MAPK pathway. This unwanted activation may be avoided by another class of inhibitors (type II) which bind the kinase in the DFG-out conformation, such as AZ628 (3) preventing heterodimerization.

View Article and Find Full Text PDF

The protein arginine methyltransferase 5 (PRMT5) methylates a variety of proteins involved in splicing, multiple signal transduction pathways, epigenetic control of gene expression, and mechanisms leading to protein expression required for cellular proliferation. Dysregulation of PRMT5 is associated with clinical features of several cancers, including lymphomas, lung cancer, and breast cancer. Here, we describe the characterization of JNJ-64619178, a novel, selective, and potent PRMT5 inhibitor, currently in clinical trials for patients with advanced solid tumors, non-Hodgkin's lymphoma, and lower-risk myelodysplastic syndrome.

View Article and Find Full Text PDF

Protein arginine methyltransferase 5 (PRMT5) is an enzyme that can symmetrically dimethylate arginine residues in histones and nonhistone proteins by using -adenosyl methionine (SAM) as the methyl donating cofactor. We have designed a library of SAM analogues and discovered potent, cell-active, and selective spiro diamines as inhibitors of the enzymatic function of PRMT5. Crystallographic studies confirmed a very interesting binding mode, involving protein flexibility, where both the cofactor pocket and part of substrate binding site are occupied by these inhibitors.

View Article and Find Full Text PDF

KRAS was recently identified to be potentially druggable by allele-specific covalent targeting of Cys-12 in vicinity to an inducible allosteric switch II pocket (S-IIP). Success of this approach requires active cycling of KRAS between its active-GTP and inactive-GDP conformations as accessibility of the S-IIP is restricted only to the GDP-bound state. This strategy proved feasible for inhibiting mutant KRAS in vitro; however, it is uncertain whether this approach would translate to in vivo.

View Article and Find Full Text PDF

The four members of the epidermal growth factor receptor (EGFR/ERBB) family form homo- and heterodimers which mediate ligand-specific regulation of many key cellular processes in normal and cancer tissues. While signaling through the EGFR has been extensively studied on the molecular level, signal transduction through ERBB3/ERBB4 heterodimers is less well understood. Here, we generated isogenic mouse Ba/F3 cells that express full-length and functional membrane-integrated ERBB3 and ERBB4 or ERBB4 alone, to serve as a defined cellular model for biological and phosphoproteomics analysis of ERBB3/ERBB4 signaling.

View Article and Find Full Text PDF

Maternal embryonic leucine zipper kinase (MELK), a serine/threonine protein kinase, has oncogenic properties and is overexpressed in many cancer cells. The oncogenic function of MELK is attributed to its capacity to disable critical cell-cycle checkpoints and reduce replication stress. Most functional studies have relied on the use of siRNA/shRNA-mediated gene silencing.

View Article and Find Full Text PDF

Likely due to conformational rearrangements, small molecule inhibitors may stabilize the active conformation of protein kinases and paradoxically promote tumorigenesis. We combined limited proteolysis with stable isotope labeling MS to monitor protein conformational changes upon binding of small molecules. Applying this method to the human serine/threonine kinase B-Raf, frequently mutated in cancer, we found that binding of ATP or its nonhydrolyzable analogue AMP-PNP, but not ADP, stabilized the structure of both B-Raf(WT) and B-Raf(V600E).

View Article and Find Full Text PDF

Proteins are dynamic molecules; they undergo crucial conformational changes induced by post-translational modifications and by binding of cofactors or other molecules. The characterization of these conformational changes and their relation to protein function is a central goal of structural biology. Unfortunately, most conventional methods to obtain structural information do not provide information on protein dynamics.

View Article and Find Full Text PDF

The V600E missense mutation in B-Raf kinase leads to an anomalous regulation of the MAPK pathway, uncontrolled cell proliferation, and initiation of tumorigenesis. While the ATP-competitive B-Raf inhibitors block the MAPK pathway in B-Raf mutant cells, they induce conformational changes to wild-type B-Raf kinase domain leading to heterodimerization with C-Raf causing a paradoxical hyperactivation of MAPK pathway. A new class of inhibitors (paradox breakers) has been developed that inhibit B-Raf(V600E) activity without agonistically affecting the MAPK pathway in wild-type B-Raf cells.

View Article and Find Full Text PDF
Article Synopsis
  • A new Type II kinase inhibitor has been developed specifically for maternal embryonic leucine zipper kinase (MELK) using a method known as structure-based ligand design.
  • This approach involved detailed structural analysis of the protein-ligand interactions through techniques like X-ray crystallography, which helped identify a unique pocket for the inhibitor to bind.
  • The optimized inhibitor is highly effective, operating at low nanomolar concentrations and able to easily enter cells, making it a promising tool for researching MELK's biological functions.
View Article and Find Full Text PDF
Article Synopsis
  • Fragment-based drug design was used effectively to target maternal embryonic leucine zipper kinase (MELK).
  • Researchers identified an initial low-affinity fragment that bound to MELK's hinge region in a unique way.
  • This fragment was then optimized into a potent, cell-penetrating inhibitor with low nanomolar affinity, making it a valuable tool for studying MELK's biological roles.
View Article and Find Full Text PDF

Unlabelled: We discovered a novel somatic gene fusion, CD74-NRG1, by transcriptome sequencing of 25 lung adenocarcinomas of never smokers. By screening 102 lung adenocarcinomas negative for known oncogenic alterations, we found four additional fusion-positive tumors, all of which were of the invasive mucinous subtype. Mechanistically, CD74-NRG1 leads to extracellular expression of the EGF-like domain of NRG1 III-β3, thereby providing the ligand for ERBB2-ERBB3 receptor complexes.

View Article and Find Full Text PDF

Maternal embryonic leucine zipper kinase (MELK) belongs to the subfamily of AMP-activated Ser/Thr protein kinases. The expression of MELK is very high in glioblastoma-type brain tumors, but it is not clear how this contributes to tumor growth. Here we show that the siRNA-mediated loss of MELK in U87 MG glioblastoma cells causes a G1/S phase cell cycle arrest accompanied by cell death or a senescence-like phenotype that can be rescued by the expression of siRNA-resistant MELK.

View Article and Find Full Text PDF

Knowledge about molecular drug action is critical for the development of protein kinase inhibitors for cancer therapy. Here, we establish a chemical proteomic approach to profile the anticancer drug SU6668, which was originally designed as a selective inhibitor of receptor tyrosine kinases involved in tumor vascularization. By employing immobilized SU6668 for the affinity capture of cellular drug targets in combination with mass spectrometry, we identified previously unknown targets of SU6668 including Aurora kinases and TANK-binding kinase 1.

View Article and Find Full Text PDF

Targeted inhibition of protein kinases with small molecule drugs has evolved into a viable approach for anticancer therapy. However, the true selectivity of these therapeutic agents has remained unclear. Here, we used a proteomic method to profile the cellular targets of the clinical epidermal growth factor receptor kinase inhibitor gefitinib.

View Article and Find Full Text PDF

Small molecule inhibitors belonging to the pyrido[2,3-d]pyrimidine class of compounds were developed as antagonists of protein tyrosine kinases implicated in cancer progression. Derivatives from this compound class are effective against most of the imatinib mesylate-resistant BCR-ABL mutants isolated from advanced chronic myeloid leukemia patients. Here, we established an efficient proteomics method employing an immobilized pyrido[2,3-d]pyrimidine ligand as an affinity probe and identified more than 30 human protein kinases affected by this class of compounds.

View Article and Find Full Text PDF

Small-molecule inhibitors of protein kinases constitute a novel class of drugs for therapeutic intervention in a variety of human diseases. Most of these agents target the relatively conserved ATP-binding site of protein kinases and have only been tested against a rather small subset of all human protein kinases. Therefore, the selectivity of protein kinase inhibitors has remained a widely underestimated, but highly important issue in drug development programs.

View Article and Find Full Text PDF

The DnaK chaperone of Escherichia coli assists protein folding by an ATP-dependent interaction with short peptide stretches within substrate polypeptides. This interaction is regulated by the DnaJ and GrpE co-chaperones, which stimulate ATP hydrolysis and nucleotide exchange by DnaK, respectively. Furthermore, GrpE has been claimed to trigger substrate release independent of its role as a nucleotide exchange factor.

View Article and Find Full Text PDF

Bisindolylmaleimide compounds such as GF109203X are potent inhibitors of protein kinase C (PKC) activity. Although bisindolylmaleimides are not entirely selective for PKC and are known to inhibit a few other protein kinases, these reagents have been extensively used to study the functional roles of PKC family enzymes in cellular signal transduction for more than a decade. Here, we establish a proteomics approach to gain further insights into the cellular effects of this compound class.

View Article and Find Full Text PDF

Hsp70 chaperones assist protein folding processes through nucleotide-controlled cycles of substrate binding and release. In our effort to understand the structure-function relationship within the Hsp70 family of proteins, we characterized the Escherichia coli member of a novel Hsp70 subfamily, HscC, and identified considerable differences to the well studied E. coli homologue, DnaK, which together suggest that HscC is a specialized chaperone.

View Article and Find Full Text PDF

HSP70 chaperones mediate protein folding by ATP-dependent interaction with short linear peptide segments that are exposed on unfolded proteins. The mode of action of the Escherichia coli homolog DnaK is representative of all HSP70 chaperones, including the endoplasmic reticulum variant BiP/GRP78. DnaK has been shown to be effective in assisting refolding of a wide variety of prokaryotic and eukaryotic proteins, including the alpha-helical homodimeric secretory cytokine interferon-gamma (IFN-gamma).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: