Publications by authors named "Dipu Karunakaran"

The overarching premise of this investigation is that injectable, long-acting antimalarial medication would encourage adherence to a dosage regimen for populations at risk of contracting the disease. To advance support for this goal, we have developed oil-based formulations of ELQ-331 (a prodrug of ELQ-300) that perform as long-acting, injectable chemoprophylactics with drug loading as high as 160 mg/ml of ELQ-331. In a pharmacokinetic study performed with rats, a single intramuscular injection of 12.

View Article and Find Full Text PDF

Long-acting antiretroviral implants could help protect high-risk individuals from HIV infection. We describe the design and testing of a long-acting reservoir subcutaneous implant capable of releasing cabotegravir for several months. We compressed cabotegravir and excipients into cylindrical pellets and heat-sealed them in tubing composed of hydrophilic poly(ether-urethane) -.

View Article and Find Full Text PDF

Purpose: Sexual transmission of HIV has been clinically proven to be preventable with a once-daily oral tablet; however, missed doses dramatically increase the risk of HIV infection. Long-acting subcutaneous implants do not allow the user to miss a dose. A desirable long-acting drug-eluting implant can deliver a constant amount of drug, adjust the delivered dose, and be readily manufactured.

View Article and Find Full Text PDF
Article Synopsis
  • This study evaluates a subcutaneous implant that delivers tenofovir alafenamide (TAF) for HIV prevention, showing effective drug delivery for over 90 days.
  • It involved testing in New Zealand White rabbits and rhesus macaques, revealing that higher doses led to significant local inflammation and tissue damage around the implants.
  • A redesigned implant with a lower release rate achieved effective drug levels but still caused unacceptable inflammation in primates, highlighting challenges in balancing drug efficacy and safety.
View Article and Find Full Text PDF

Light-activated RNA interference (LARI) is an effective way to control gene expression with light. This, in turn, allows for the spacing, timing and degree of gene expression to be controlled by the spacing, timing and amount of light irradiation. The key mediators of this process are siRNA or dsRNA that have been modified with four photocleavable groups of dimethoxy nitro phenyl ethyl (DMNPE), located on the four terminal phosphate groups of the duplex RNA.

View Article and Find Full Text PDF

Diazo-based precursors of photolabile groups have been used extensively for modifying nucleic acids, with the intention of toggling biological processes with light. These processes include transcription, translation and RNA interference. In these cases, the photolabile groups have been typically depicted as modifying the phosphate backbone of RNA and DNA.

View Article and Find Full Text PDF