Human genetics research has discovered thousands of proteins associated with complex and rare diseases. Genome-wide association studies (GWAS) and studies of Mendelian disease have resulted in an increased understanding of the role of gene function and regulation in human conditions. Although the application of human genetics has been explored primarily as a method to identify potential drug targets and support their relevance to disease in humans, there is increasing interest in using genetic data to identify potential safety liabilities of modulating a given target.
View Article and Find Full Text PDFThis phase I/II single-arm study evaluated the safety, pharmacokinetics, pharmacodynamics, and activity of foretinib, an oral multikinase inhibitor of MET, ROS, RON, AXL, TIE-2, and VEGFR2, in the first-line setting in advanced hepatocellular carcinoma patients. In the phase I part, advanced hepatocellular carcinoma patients were dose escalated on foretinib (30-60 mg) every day using the standard 3+3 design. Once the maximum tolerated dose (MTD) was determined, an additional 32 patients were dosed at the MTD in the phase II expansion cohort for assessment of efficacy and safety.
View Article and Find Full Text PDFBreast Cancer Res Treat
February 2011
TSC1 acts coordinately with TSC2 in a complex to inhibit mTOR, an emerging therapeutic target and known promoter of cell growth and cell cycle progression. Perturbation of the mTOR pathway, through abnormal expression or function of pathway genes, could lead to tumorigenesis. TSC1 and TSC2 expression is reduced in invasive breast cancer as compared with normal mammary epithelium.
View Article and Find Full Text PDFMurine double minute 4 (MDM4) shares significant structural homology with murine double minute 2 (MDM2) and interacts and regulates transcriptional activity of the tumor suppressor p53. In tumors with wild-type p53, there is often overexpression of MDM2 or MDM4 leading to functional inactivation of p53. A single-nucleotide polymorphism (SNP) in the promoter of human MDM2 (SNP309) was shown to associate with increased MDM2 expression and increased risk of cancer.
View Article and Find Full Text PDF