Publications by authors named "Diptashree Das"

A magnetoelectric antenna (ME) can exhibit the dual capabilities of wireless energy harvesting and sensing at different frequencies. In this article, a behavioral circuit model for hybrid ME antennas is described to emulate the radio frequency (RF) energy harvesting and sensing operations during circuit simulations. The ME antenna of this work is interfaced with a CMOS energy harvester chip towards the goal of developing a wireless communication link for fully integrated implantable devices.

View Article and Find Full Text PDF

This paper presents a fully integrated RF energy harvester (EH) with 30% end-to-end power harvesting efficiency (PHE) and supports high output voltage operation, up to 9.3V, with a 1.07 GHz input and under the electrode model for neural applications.

View Article and Find Full Text PDF

Ultra-compact wireless implantable medical devices are in great demand for healthcare applications, in particular for neural recording and stimulation. Current implantable technologies based on miniaturized micro-coils suffer from low wireless power transfer efficiency (PTE) and are not always compliant with the specific absorption rate imposed by the Federal Communications Commission. Moreover, current implantable devices are reliant on differential recording of voltage or current across space and require direct contact between electrode and tissue.

View Article and Find Full Text PDF