Publications by authors named "Dipsikha Bhattacharya"

Scarless healing of injury remains a clinical challenge because of its complicated and overlapping phases of inflammation, clearing, and regeneration. Curcumin has been already established as a potential wound healing agent for normal and diabetic-impaired wounds. Herein, the question has been addressed whether a well-known antioxidant cerium oxide nanoparticle (CNP) can potentiate the activity of curcumin to promote a cellular program for scarless healing.

View Article and Find Full Text PDF

The development of a novel multifunctional porous nanoplatform for targeted anticancer drug delivery with cell imaging and magnetic resonance imaging has been realised in the current work. Here we have developed a magnetic nanoscale metal organic frameworks (NMOF) for potential targeted drug delivery. These magnetic NMOFs were fabricated by incorporation of Fe3O4 nanoparticles into porous isoreticular metal organic frameworks (IRMOF-3).

View Article and Find Full Text PDF

In the present study, a facile functionalization of magnetic nanoparticles has been described for the immobilization of enzyme that offers many advantages for reuse and excellent efficiencies. The magnetic gold nanocomposites have been fabricated for the successful immobilization of an industrially important enzyme "papain". For immobilization of papain on magnetic gold nanocomposites, magnetic nanoparticles were modified with 3-(mercaptopropyl) trimethoxy silane (MPTS).

View Article and Find Full Text PDF

A highly facile and feasible strategy on the fabrication of advanced intrinsic peroxidase mimetics based on Mn(2+) doped mixed ferrite (Mn(II)(x)Fe(II)(1-x)Fe(III)(2)O(4)) nanoparticles was demonstrated for the quantitative and sensitive detection of mouse IgG (as a model analyte). Mn(2+) doped Fe(1-x)Mn(x)Fe(2)O(4) nanoparticles were synthesized using varying ratios of Mn(2+):Fe(2+) ions and characterized by the well known complementary techniques. The increase of Mn(2+) proportion had remarkably enhanced the peroxidase activity and magnetism.

View Article and Find Full Text PDF

This article delineates the design and synthesis of a novel, bio-functionalized, magneto-fluorescent multifunctional nanoparticles suitable for cancer-specific targeting, detection and imaging. Biocompatible, hydrophilic, magneto-fluorescent nanoparticles with surface-pendant amine, carboxyl and aldehyde groups were designed using o-carboxymethyl chitosan (OCMC). The free amine groups of OCMC stabilized magnetite nanoparticles on the surface allow for the covalent attachment of a fluorescent dye such as rhodamine isothiocyanate (RITC) with the aim to develop a magneto-fluorescent nanoprobe for optical imaging.

View Article and Find Full Text PDF