Publications by authors named "Dipple K"

Article Synopsis
  • - A rare genetic condition involving mitochondrial complex III deficiency and lactic acidosis, characterized by scalp alopecia, was identified in two unrelated cases and discussed further with a participant from the Undiagnosed Diseases Network (UDN).
  • - The participant had two autosomal recessive disorders discovered through genome sequencing: mitochondrial complex III deficiency and cataracts, with specifics on previously documented pathogenic variants for each condition.
  • - A combination of enzyme assays and cellular proteomics showed clear dysfunction in complex III and low levels of a crucial protein, validating the genetic mutations' pathogenic effects and broadening understanding of these rare disorders.
View Article and Find Full Text PDF
Article Synopsis
  • DNA replication is crucial for cell division and maintaining genetic stability, with the RFC complex playing a key role by loading important proteins onto DNA.
  • While RFC1's involvement in certain disorders is recognized, the impact of RFC2-5 subunits, particularly RFC4, on human genetic diseases remains under-researched.
  • Our study identifies harmful variants in RFC4 linked to a new disorder marked by muscle weakness and hearing issues, showing how these variants disrupt RFC complex formation and ultimately affect DNA replication and cell cycle processes.
View Article and Find Full Text PDF

Selenophosphate synthetase (SEPHS) plays an essential role in selenium metabolism. Two mammalian SEPHS paralogues, SEPHS1 and SEPHS2, share high sequence identity and structural homology with SEPHS. Here, we report nine individuals from eight families with developmental delay, growth and feeding problems, hypotonia, and dysmorphic features, all with heterozygous missense variants in SEPHS1.

View Article and Find Full Text PDF

Resolving the molecular basis of a Mendelian condition (MC) remains challenging owing to the diverse mechanisms by which genetic variants cause disease. To address this, we developed a synchronized long-read genome, methylome, epigenome, and transcriptome sequencing approach, which enables accurate single-nucleotide, insertion-deletion, and structural variant calling and diploid genome assembly, and permits the simultaneous elucidation of haplotype-resolved CpG methylation, chromatin accessibility, and full-length transcript information in a single long-read sequencing run. Application of this approach to an Undiagnosed Diseases Network (UDN) participant with a chromosome X;13 balanced translocation of uncertain significance revealed that this translocation disrupted the functioning of four separate genes (, , , and ) previously associated with single-gene MCs.

View Article and Find Full Text PDF

Objectives: Transcript sequencing of patient-derived samples has been shown to improve the diagnostic yield for solving cases of suspected Mendelian conditions, yet the added benefit of full-length long-read transcript sequencing is largely unexplored.

Methods: We applied short-read and full-length transcript sequencing and mitochondrial functional studies to a patient-derived fibroblast cell line from an individual with neuropathy that previously lacked a molecular diagnosis.

Results: We identified an intronic homozygous c.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores the role of mosaicism in genetic diseases and how it relates to disease-causing variants that arise spontaneously (de novo variants) in families, involving data from nearly 15,000 individuals.
  • - Researchers found that about 4.51% of individuals with confirmed genetic diseases showed mosaic genetic disease (MGD), and approximately 2.86% of parents had parental mosaicism, especially in cases involving de novo variants.
  • - The findings highlight the complexity and variability of MGD, suggesting it contributes significantly to genetic disorders, although further investigation is needed to better understand its implications for diagnoses and familial risks.
View Article and Find Full Text PDF

SLC1A4 is a trimeric neutral amino acid transporter essential for shuttling L-serine from astrocytes into neurons. Individuals with biallelic variants in SLC1A4 are known to have spastic tetraplegia, thin corpus callosum, and progressive microcephaly (SPATCCM) syndrome, but individuals with heterozygous variants are not thought to have disease. We identify an 8-year-old patient with global developmental delay, spasticity, epilepsy, and microcephaly who has a de novo heterozygous three amino acid duplication in SLC1A4 (L86_M88dup).

View Article and Find Full Text PDF

Objectives: Transcript sequencing of patient derived samples has been shown to improve the diagnostic yield for solving cases of likely Mendelian disorders, yet the added benefit of full-length long-read transcript sequencing is largely unexplored.

Methods: We applied short-read and full-length isoform cDNA sequencing and mitochondrial functional studies to a patient-derived fibroblast cell line from an individual with neuropathy that previously lacked a molecular diagnosis.

Results: We identified an intronic homozygous c.

View Article and Find Full Text PDF

Despite widespread clinical genetic testing, many individuals with suspected genetic conditions lack a precise diagnosis, limiting their opportunity to take advantage of state-of-the-art treatments. In some cases, testing reveals difficult-to-evaluate structural differences, candidate variants that do not fully explain the phenotype, single pathogenic variants in recessive disorders, or no variants in genes of interest. Thus, there is a need for better tools to identify a precise genetic diagnosis in individuals when conventional testing approaches have been exhausted.

View Article and Find Full Text PDF

Medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD) is a fatty acid oxidation disorder in which the patient is unable to break down fats to produce energy. This disorder places children at risk for metabolic decompensation during periods of stress, such as routine childhood illnesses. The intent of this clinical report is to provide pediatricians with additional information regarding the acute clinical care of patients with MCADD.

View Article and Find Full Text PDF

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most frequent birth defects and represent the most common cause of chronic kidney disease in the first three decades of life. Despite the discovery of dozens of monogenic causes of CAKUT, most pathogenic pathways remain elusive. We performed whole-exome sequencing (WES) in 551 individuals with CAKUT and identified a heterozygous de novo stop-gain variant in ZMYM2 in two different families with CAKUT.

View Article and Find Full Text PDF

Invited for the cover of this issue is Christopher Bejger and co-workers at UNC Charlotte, Columbia University, and Donghua University. The image depicts a pair of star clusters in the constellation Perseus as the structure of two metal clusters in the reported framework. Read the full text of the article at 10.

View Article and Find Full Text PDF

Objectives: To evaluate the clinical usefulness of rapid exome sequencing (rES) in critically ill children with likely genetic disease using a standardized process at a single institution. To provide evidence that rES with should become standard of care for this patient population.

Study Design: We implemented a process to provide clinical-grade rES to eligible children at a single institution.

View Article and Find Full Text PDF

The design of metal-organic frameworks (MOFs) that incorporate more than one metal cluster constituent is a challenging task. Conventional one-pot reaction protocols require judicious selection of ligand and metal ion precursors, yet remain unpredictable. Stable, preformed nanoclusters, with ligand shells that can undergo additional coordination-driven reactions, provide a platform for assembling multi-cluster solids with precision.

View Article and Find Full Text PDF

We report two brothers with severe global cognitive and motor delay, cortical visual impairment and sick sinus syndrome who were born to consanguineous parents. Standard genetic evaluations did not reveal the cause of their mental retardation. As expected, chromosomal microarray (CMA) revealed extensive regions of homozygosity.

View Article and Find Full Text PDF

Rare individuals with 20p11.2 proximal deletions have been previously reported, with a variable phenotype that includes heterotaxy, biliary atresia, midline brain defects associated with panhypopituitarism, intellectual disability, scoliosis, and seizures. Deletions have ranged in size from 277 kb to 11.

View Article and Find Full Text PDF

We describe a neonate with severe respiratory failure due to acinar dysplasia found by rapid exome sequencing (rES), to have a deletion containing the TBX4 gene. rES can affect patient management in the intensive care unit and should be considered in concert with lung biopsy in neonates with undifferentiated respiratory failure.

View Article and Find Full Text PDF

Pathogenic de novo variants in the X-linked gene SLC35A2 encoding the major Golgi-localized UDP-galactose transporter required for proper protein and lipid glycosylation cause a rare type of congenital disorder of glycosylation known as SLC35A2-congenital disorders of glycosylation (CDG; formerly CDG-IIm). To date, 29 unique de novo variants from 32 unrelated individuals have been described in the literature. The majority of affected individuals are primarily characterized by varying degrees of neurological impairments with or without skeletal abnormalities.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied lung development defects in neonates by analyzing samples from deceased infants with specific lung disorders.
  • They found genetic variants linked to the genes TBX4 and FGF10 in over half of the cases, indicating a possible genetic basis for the lethal lung conditions.
  • The study highlights the significance of TBX4-FGF10-FGFR2 signaling in lung development and provides insights into the genetic factors contributing to these severe lung abnormalities.
View Article and Find Full Text PDF

Glycerol kinase (GK) is a multifunctional enzyme located at the interface of carbohydrate and fat metabolism. It contributes to both central carbon metabolism and adipogenesis; specifically, through its role as the ATP-stimulated translocation promoter (ASTP). GK overexpression leads to increased ASTP activity and increased fat storage in H4IIE cells.

View Article and Find Full Text PDF

Craniofacial malformations include a variety of anomalies, including cleft lip with or without cleft palate, craniosynostosis, microtia, and hemifacial microsomia. All of these anomalies can be either isolated or part of a defined genetic syndrome. A clinical geneticist or genetic counselor should be a member of the craniofacial team to help determine which patients have isolated anomalies and which are likely to have a syndrome.

View Article and Find Full Text PDF

Mathematical modeling approaches have been commonly used in complex signaling pathway studies such as the insulin signal transduction pathway. Our expanded mathematical model of the insulin signal transduction pathway was previously shown to effectively predict glucose clearance rates using mRNA levels of key components of the pathway in a mouse model. In this study, we re-optimized and applied our expanded model to study insulin sensitivity in other species and tissues (human skeletal muscle) with altered protein activities of insulin signal transduction pathway components.

View Article and Find Full Text PDF