Glycosphingolipids (GSLs) are a type of amphipathic lipid molecules consisting of hydrophobic ceramide backbone bound to carbohydrate moiety clustered in the cell surface microdomains named 'lipid rafts' and are known to participate in cell-cell communication as well as intra-cellular signaling, thereby facilitating critical normal cellular processes and functions. Over the past several decades, various GSLs have been reported to be aberrantly expressed in different cancers, many of which have been associated with their prognosis. The wide implication of MAPK signaling in controlling tumor growth, progression, and metastasis through activation of an upstream signaling cascade, often originating in the cell membrane, justifies the rationale for its plausible influence on MAPK signaling.
View Article and Find Full Text PDFWhile the anti-inflammatory activities of Eriodictyol, a plant-derived flavonoid is well-known, reports on its anti-cancer efficacy and selective cytotoxicity in cancer cells are still emerging. However, little is known regarding its mechanism of selective anti-cancer activities. Here, we show the mechanism of selective cytotoxicity of Eriodictyol towards cancer cells compared to normal cells.
View Article and Find Full Text PDFBackground: Microtubules, the key components of the eukaryotic cytoskeleton and mitotic spindle, are one of the most sought-after targets for cancer chemotherapy, especially due to their indispensible role in mitosis. Cervical cancer is a prevalent malignancy among women of developing countries including India. In spite of the remarkable therapeutic advancement, the non-specificity of chemotherapeutic drugs adversely affect the patients' survival and well-being, thus, necessitating the quest for novel indole-based anti-microtubule agent against cervical cancer, with high degree of potency and selectivity.
View Article and Find Full Text PDFThe original version of this article unfortunately contained an error in acknowledgment text. The authors would like to include a statement: "Moumita Dasgupta is supported by Junior Research Fellowship from University Grant Commission, India." in acknowledgment section.
View Article and Find Full Text PDFPaclitaxel is one of the most commonly used drugs for the treatment of nonsmall cell lung cancer (NSCLC). However acquired resistance to paclitaxel, epithelial to mesenchymal transition and cancer stem cell formation are the major obstacles for successful chemotherapy with this drug. Some of the major reasons behind chemoresistance development include increased ability of the cancer cells to survive under stress conditions by autophagy, increased expression of drug efflux pumps, tubulin mutations etc.
View Article and Find Full Text PDFIn the development of small-molecule drug candidates, naphthalimide-based compounds hold a very important position as potent anticancer agents with considerable safety in drug discoveries. Being synthetically and readily accessible, naphthalimide compounds with planar architecture have been developed mostly as DNA-targeting intercalators. However, in this article, it is demonstrated, for the first time, that an unfused naphthalimide-benzothiazole bichromophoric compound 2-(6-chlorobenzo[ d] thiazol-2-yl)-1 H-benzo[ de] isoquinoline-1,3(2 H)-dione (CBIQD), seems to expand the bioactivity of naphthalimide as anti-mitotic agent also.
View Article and Find Full Text PDFPaclitaxel (Tx) is one of the first-line chemotherapeutic drugs used against lung cancer, but acquired resistance to this drug is a major challenge against successful chemotherapy. In this work, we have focused on the chronological changes of various cellular parameters and associated effect on Tx (10 nM) resistance development in A549 cell line. It was observed, at initial stage, the cell death percentage due to drug treatment had increased up to 20 days, and thereafter, it started declining and became completely resistant by 40 days.
View Article and Find Full Text PDFBackground And Objective: The clinical success of the chemotherapeutic drugs is restricted by the nonspecific toxicity-related adverse side effects. The diverse implication of indoles and thiazoles in medicinal chemistry prompted us to develop a new series of novel 2-aryl-amino-4-(3'-indolyl)thiazoles as more effective and less toxic anti-cancer compounds.
Method And Results: One-pot microwave-assisted rapid and high yielding synthesis of 2-arylamino-4-(3'- indolyl)thiazoles involved the reaction of easily available α-tosyloxy-ketones with N-arylthioureas in polyethylene glycol-400 (PEG-400).
The biological significance of microtubules makes them a validated target of cancer therapy. In this study, we have utilized indole, an important pharmacological scaffold, to synthesize novel bis(indolyl)-hydrazide-hydrazone derivatives (NMK-BH compounds) and recognized NMK-BH3 as the most effective one in inhibiting A549 cell proliferation and assembly of tissue-purified tubulin. Cell viability experiments showed that NMK-BH3 inhibited proliferation of human lung adenocarcinoma (A549) cells, normal human lung fibroblasts (WI38) and peripheral blood mononuclear cells (PBMC) with IC50 values of ∼2, 48.
View Article and Find Full Text PDFBackground: The protozoan parasite Leishmania donovani (LD) reduces cellular cholesterol of the host possibly for its own benefit. Cholesterol is mostly present in the specialized compartment of the plasma membrane. The relation between mobility of membrane proteins and cholesterol depletion from membrane continues to be an important issue.
View Article and Find Full Text PDF