Publications by authors named "Dipanwita Basu"

Nonstructural protein 1 (NS1) plays a crucial function in the replication, spread, and pathogenesis of influenza virus by inhibiting the host innate immune response. Here we report the discovery and optimization of novel pyrazolopyridine NS1 antagonists that can potently inhibit influenza A/PR/8/34 replication in MDCK cells, rescue MDCK cells from cytopathic effects of seasonal influenza A strains, reverse NS1-dependent inhibition of IFN-β gene expression, and suppress the slow growth phenotype in NS1-expressing yeast. These pyrazolopyridines will enable researchers to investigate NS1 function during infection and how antagonists can be utilized in the next generation of treatments for influenza infection.

View Article and Find Full Text PDF

Severe acute respiratory coronavirus (SARS-CoV) emerged in 2002, resulting in roughly 8000 cases worldwide and 10% mortality. The animal reservoirs for SARS-CoV precursors still exist and the likelihood of future outbreaks in the human population is high. The SARS-CoV papain-like protease (PLP) is an attractive target for pharmaceutical development because it is essential for virus replication and is conserved among human coronaviruses.

View Article and Find Full Text PDF

We describe the first miniaturized device capable of the front-end sample preparation essential for detecting RNA-based infectious agents. The microfluidic device integrates sample purification and reverse transcription PCR (RT-PCR) amplification for the identification and detection of influenza A. The device incorporates a chitosan-based RNA binding phase for the completely aqueous isolation of nucleic acids, avoiding the PCR inhibitory effects of guanidine and isopropanol used in silica-based extraction methods.

View Article and Find Full Text PDF

Influenza virus non-structural protein 1 (NS1) is the centrepiece of the viral response to the host interferon (IFN) system. NS1 has been demonstrated previously to be a potential therapeutic target for antiviral therapy by identification of specific small-molecule inhibitors. This study demonstrated the biological mechanism for a potent new NS1 antagonist.

View Article and Find Full Text PDF

The innate immune system guards against virus infection through a variety of mechanisms including mobilization of the host interferon system, which attacks viral products mainly at a posttranscriptional level. The influenza virus NS1 protein is a multifunctional facilitator of virus replication, one of whose actions is to antagonize the interferon response. Since NS1 is required for efficient virus replication, it was reasoned that chemical inhibitors of this protein could be used to further understand virus-host interactions and also serve as potential new antiviral agents.

View Article and Find Full Text PDF

During morphogenesis, the actin cytoskeleton mediates cell-shape change in response to growth signals. In plants, actin filaments organize the cytoplasm in regions of polarized growth, and the filamentous arrays can be highly dynamic. Small GTPase signaling proteins termed Rho of plants (ROP)/RAC control actin polymerization.

View Article and Find Full Text PDF

In a plant cell, a subset of actin filaments function as a scaffold that positions the endomembrane system and acts as a substrate on which organelle motility occurs. Other actin filament arrays appear to be more dynamic and reorganize in response to growth signals and external cues. The distorted group of trichome morphology mutants provides powerful genetic tools to study the control of actin filament nucleation in the context of morphogenesis.

View Article and Find Full Text PDF

In migrating cells, the actin filament nucleation activity of ARP2/3 is an essential component of dynamic cell shape change and motility. In response to signals from the small GTPase Rac1, alterations in the composition and/or subcellular localization of the WAVE complex lead to ARP2/3 activation. The human WAVE complex subunit, WAVE1/SCAR1, was first identified in Dictyostelium and is a direct ARP2/3 activator.

View Article and Find Full Text PDF

The WAVE complex is an essential regulator of actin-related protein (ARP) 2/3-dependent actin filament nucleation and cell shape change in migrating cells. Although the composition of the WAVE complex is well characterized, the cellular mechanisms that control its activity and localization are not well known. The 'distorted group' defines a set of Arabidopsis genes that are required to remodel the actin cytoskeleton and maintain the polarized elongation of branched, hair-like cells termed trichomes.

View Article and Find Full Text PDF

Arabidopsis trichomes are unicellular, branched structures that have highly constrained requirements for the cytoskeleton. The 'distorted group' genes function downstream from microtubule-based branch initiation, and are required during the actin-dependent phase of polarized stalk and branch expansion. Of the eight known 'distorted group' genes, a subset encode homologs of ARP2/3 complex subunits.

View Article and Find Full Text PDF

Plant cells employ the actin cytoskeleton to stably position organelles, as tracks for long distance transport, and to reorganize the cytoplasm in response to developmental and environmental cues. While diverse classes of actin binding proteins have been implicated in growth control, the mechanisms of cytoskeletal reorganization and the cellular functions of specific actin filament arrays are unclear. Arabidopsis trichome morphogenesis includes distinct requirements for the microtubule and actin filament cytoskeletons.

View Article and Find Full Text PDF