Tuberculosis (TB) is an infectious disease that remains one of the major global public health concerns. Early detection of Active Pulmonary TB is therefore of utmost importance for controlling lethality and disease spreading. Currently available TB diagnostics can be broadly categorized into microscopy, culture-based, and molecular approaches, all of which come with compromised sensitivity, limited efficacy, and high expenses.
View Article and Find Full Text PDFARL5B, an ARF-like small GTPase localized to the trans-Golgi, is known for regulating endosome-Golgi trafficking and promoting the migration and invasion of breast cancer cells. Although a few interacting partners have been identified, the mechanism of the shuttling of ARL5B between the Golgi membrane and the cytosol is still obscure. Here, using GFP-binding protein (GBP) pull-down followed by mass spectrometry, we identified heat shock cognate protein (HSC70) as an additional interacting partner of ARL5B.
View Article and Find Full Text PDFCollective cell migration (CCM), in which cell-cell integrity remains preserved during movement, plays an important role in the progression of cancer. However, studies describing CCM in cancer progression are majorly focused on the effects of extracellular tissue components on moving cell plasticity. The molecular and cellular mechanisms of CCM during cancer progression remain poorly explored.
View Article and Find Full Text PDFCancer therapy describes the treatment of cancer, often with surgery, chemotherapy, and radiotherapy. Additionally, RNA interference (RNAi) is likely to be considered a new emerging, alternative therapeutic approach for silencing/targeting cancer-related genes. RNAi can exert antiproliferative and proapoptotic effects by targeting functional carcinogenic molecules or knocking down gene products of cancer-related genes.
View Article and Find Full Text PDFThe Lugol's staining method has been widely used to detect changes in the maintenance of stem cell fate in the columella root cap of Arabidopsis roots since the late 1990s. However, various limitations of this method demand for additional or complementary new approaches. For instance, it is unable to reveal the division rate of columella root cap stem cells.
View Article and Find Full Text PDFAbiotic stress conditions adversely affect plant growth, resulting in significant decline in crop productivity. To mitigate and recover from the damaging effects of such adverse environmental conditions, plants have evolved various adaptive strategies at cellular and metabolic levels. Most of these strategies involve dynamic changes in protein abundance that can be best explored through proteomics.
View Article and Find Full Text PDFDrug target identification is a critical step toward understanding the mechanism of action of a drug, which can help one improve the drug's current therapeutic regime and expand the drug's therapeutic potential. However, current in vitro affinity-chromatography-based and in vivo activity-based protein profiling approaches generally face difficulties in discriminating specific drug targets from nonspecific ones. Here we describe a novel approach combining isobaric tags for relative and absolute quantitation with clickable activity-based protein profiling to specifically and comprehensively identify the protein targets of andrographolide (Andro), a natural product with known anti-inflammation and anti-cancer effects, in live cancer cells.
View Article and Find Full Text PDFKeeping continuity with our previous study that revealed direct correlations between CRC metastasis and enhanced CacyBP protein levels, here we attempt to improve our understanding of the mechanisms involved within this enigmatic process. Overexpression of CacyBP (CacyBP-OE) in primary CRC cell and its knock down (CacyBP-KD) in the metastatic CRC cells revealed (through phenotypic studies) the positive impact of the protein on metastasis. Additionally, two individual 4-plex iTRAQ based comparative proteomics experiments were carried out on the CacyBP-OE and CacyBP-KD cells, each with two biological replicates.
View Article and Find Full Text PDFGonadotropin-releasing hormone (GnRH) regulates the synthesis and secretion of follicle-stimulating hormone (FSH) by stimulating the transcription of Fshβ gene. Our iTRAQ quantitative proteomics result showed that the abundance of α-actinin4 (ACTN4) increased in the nuclei of LβT2 cells upon GnRH induction. Using RNA interference, reverse transcription and real-time PCR, luciferase and transient transfection assays, we proved that ACTN4 is involved in the regulation of mouse Fshβ gene (mFshβ) transcription and its C-terminal calmodulin (CaM)-like domain is crucial for this process.
View Article and Find Full Text PDFThis study compared the whole cell proteome profiles of two isogenic colorectal cancer (CRC) cell lines (primary SW480 cell line and its lymph node metastatic variant SW620), as an in vitro metastatic model, to gain an insight into the molecular events of CRC metastasis. Using iTRAQ (isobaric tags for relative and absolute quantitation) based shotgun proteomics approach, we identified 1140 unique proteins, out of which 147 were found to be significantly altered in the metastatic cell. Ingenuity pathway analysis with those significantly altered proteins, revealed cellular organization and assembly as the top-ranked altered biological function.
View Article and Find Full Text PDF