Duvelisib is a dual inhibitor of phosphoinositide 3 kinase that received global approval by the US Food and Drug Administration in 2018 to treat follicular lymphoma after at least two prior systemic therapies. An extensive literature search revealed that, to date, metabolites of duvelisib have not been characterized and information on them is not available in any of the literature. Moreover, the metabolism pathway is yet to be established.
View Article and Find Full Text PDFChromatography and mass spectrometry based techniques are the most commonly employed procedures to quantitate the analytes in pharmaceutical research. However, sensitivity of analytical methods significantly varies due to the difference in physicochemical characteristics of analytes. Sensitivity of methods greatly affects the quality of analytical results.
View Article and Find Full Text PDFAdvancement in metabolism profiling approaches and bioanalytical techniques has been revolutionized over the last two decades. Different and approaches along with advanced bioanalytical techniques are enabling the accurate qualitative and quantitative analysis of metabolites. This review summarizes various modern and approaches for executing metabolism studies with special emphasis on the recent advancement in the field.
View Article and Find Full Text PDFVery thin metallic films deposited on a substrate often dewet upon thermal exposure, forming discrete islands of micrometer and nanometer-sized metal particles. Herein, Cu islands on Si substrate, which were formed due to agglomeration (or 'dewetting') of Cu thin film at 600 °C, were exposed to thermal cycling, and the ensuing evolution in their morphology was monitored. Thermal cycling was performed between either -25 °C and 150 °C or 25 °C and 400 °C, using different heating and cooling rates.
View Article and Find Full Text PDFVery thin metallic films are susceptible to dewetting upon thermal excursions, resulting in fragmentation and hence loss of structural integrity. Herein, 15 to 55 nm thick Cu films deposited on a Si substrate were isothermally annealed at 400 to 700 °C inside a scanning electron microscope operating in high-vacuum mode and the ensuing dewetting behavior was studied. The observations revealed that the induction time before the void nucleation varied with film thickness as per a power-law with an exponent of 4, and the activation energy for both the void nucleation and the growth was close to the activation energy for surface diffusion.
View Article and Find Full Text PDF