Publications by authors named "Dipak Sarkar"

Background: Microglia, a type of resident immune cells within the central nervous system, have been implicated in ethanol-activated neuronal death of the stress regulatory proopiomelanocortin (POMC) neuron-producing β-endorphin peptides in the hypothalamus in a postnatal rat model of fetal alcohol spectrum disorders. We determined if microglial extracellular vesicles (exosomes) are involved in the ethanol-induced neuronal death of the β-endorphin neuron via secreting elevated levels of the chemokine monocyte chemoattractant protein 1 (MCP1), a key regulator of neuroinflammation.

Methods: We employed an in vitro model, consisting of primary culture of hypothalamic microglia prepared from postnatal day 2 (PND2) rat hypothalami and treated with or without 50 mM ethanol for 24 h, and an in vivo animal model in which microglia were obtained from hypothalami of PND6 rats fed daily with 2.

View Article and Find Full Text PDF

Background: Prenatal alcohol exposure poses significant risks to offspring mental health. However, the interplay between genetic predispositions to mental health disorders and prenatal alcohol exposure remains incompletely understood, limiting our ability to develop effective interventions for these conditions.

Methods: Data from the Adolescent Brain and Cognitive Development (ABCD) Study were analyzed to explore associations between polygenic risk scores (PRS) for mental disorders and maternal alcohol consumption during pregnancy.

View Article and Find Full Text PDF

Prenatal alcohol-exposed (AE) infants and children often demonstrate disrupted sleep patterns, including more frequent awakenings, reduced total sleep time, and more night-to-night sleep variability. Despite the strong connection between sleep patterns and circadian rhythmicity, relatively little is known about circadian rhythm disruptions in individuals with AE. Recently, several reports demonstrated that evaluating the expression patterns of human clock genes in biological fluids could reveal an individual's circadian phenotype.

View Article and Find Full Text PDF

Background: Pituitary neuroendocrine tumors, PitNETs, are often aggressive and precipitate in distant metastases that are refractory to current therapies. However, the molecular mechanism in PitNETs' aggressiveness is not well understood. Developmental pluripotency-associated 4 (DPPA4) is known as a stem cell regulatory gene and overexpressed in certain cancers, but its function in the context of PitNETs' aggressiveness is not known.

View Article and Find Full Text PDF

Fetal alcohol spectrum disorders (FASD) are a set of abnormalities caused by prenatal exposure to ethanol and are characterized by developmental defects in the brain that lead to various overt and non-overt physiological abnormalities. Growing evidence suggests that in utero alcohol exposure induces functional and structural abnormalities in gliogenesis and neuron-glia interactions, suggesting a possible role of glial cell pathologies in the development of FASD. However, the molecular mechanisms of neuron-glia interactions that lead to the development of FASD are not clearly understood.

View Article and Find Full Text PDF

Introduction: Early life ethanol exposure is known to program hypothalamic proopiomelanocortin (POMC) neurons to express a reduced level of POMC and its control of stress axis functions throughout the life span. In this study, we tested whether miRNAs contribute to the ethanol-induced suppression of Pomc gene expression during the developmental period.

Methods: In in vivo studies, POMC-EGFP male mice were fed with 2.

View Article and Find Full Text PDF

Background: Alcohol drinking during pregnancy often adversely affects brain development among offspring, inducing persistent central nervous system dysfunction. However, it is unknown whether fetal alcohol exposure (FAE) promotes the biochemical characteristics of Alzheimer's disease in offspring.

Methods: We used a first- and second-trimester human equivalent rat model of FAE that involves feeding a liquid diet containing 6.

View Article and Find Full Text PDF

We conducted a systematic review with meta-analytic elements using publicly available Gene Expression Omnibus (GEO) datasets to determine the role of epigenetic mechanisms in prenatal alcohol exposure (PAE)-induced hypothalamic-pituitary-adrenal (HPA) axis dysfunctions in offspring. Several studies have demonstrated that PAE has long-term consequences on HPA axis functions in offspring. Some studies determined that alcohol-induced epigenetic alterations during fetal development persist in adulthood.

View Article and Find Full Text PDF

Background: Opioid and beta-adrenergic receptors are recently shown to cross talk via formation of receptor heterodimers to control the growth and proliferation of breast cancer cells. However, the underlying cell signaling mechanism remained unclear.

Methods: To determine the effect of the interaction of the two systems in breast cancer, we employed triple-negative breast cancer cell lines MDA-MB-231 and MDA-MB-468, CRISPR or chemical inhibition or activation of beta-adrenergic receptors (B2AR) and mu-opioid receptors (MOR) gene, and PCR array technology and studied aggressive tumor phenotype and signaling cascades.

View Article and Find Full Text PDF

Previously it has been shown that fetal alcohol exposure increases the stress response partly due to lowering stress regulatory proopiomelanocortin (Pomc) gene expression in the hypothalamus via epigenetic mechanisms for multiple generations in mixed-breed rats. In this study we assess the induction of heritable epigenetic changes of Pomc-related variants by fetal alcohol exposure in isogenic Fischer 344 rats. Using transgenerational breeding models and fetal alcohol exposure procedures, we determined changes in hypothalamic Pomc gene expression and its methylation levels, plasma corticosterone hormone response to restraint stress, and anxiety-like behaviors using elevated plus maze tests in fetal alcohol-exposed offspring for multiple generations in isogenic Fischer rats.

View Article and Find Full Text PDF

Cancer progression is known to be promoted by increased body stress caused by elevated beta-adrenergic and opioidergic nervous system activities. The effects of β2-adrenergic blocker propranolol (PRO) and μ-opioid receptor antagonist naltrexone (NTX) were tested using a preclinical model of human breast cancer. These drugs, individually, and more potently when combined, inhibited the cell growth and progression of breast cancer cells in vitro in cultures, and in vivo in rat xenografts.

View Article and Find Full Text PDF

Fetal alcohol exposure (FAE) causes various neurodevelopmental deficits in offspring, including reduced expression of the stress regulatory proopiomelanocortin () gene and an elevated stress response for multiple generations via the male germline. Male germline-specific effects of FAE on the gene raises the question if the sex-determining region Y (SRY) may have a role in regulating gene expression. Using a transgenerational model of FAE in Fischer 344 rats, we determined the role of SRY in the regulation of the gene.

View Article and Find Full Text PDF

Heavy alcohol drinking alters glucose metabolism, but the inheritability of this effect of alcohol is not well understood. We used an animal model of preconception alcohol exposure in which adult female rats were given free access to 6.7% alcohol in a liquid diet and water for about 4 weeks, went without alcohol for 3 weeks, and then were bred to generate male and female offspring.

View Article and Find Full Text PDF

Microglia, a type of CNS immune cell, have been shown to contribute to ethanol-activated neuronal death of the stress regulatory proopiomelanocortin (POMC) neuron-producing β-endorphin peptides in the hypothalamus in a postnatal rat model of fetal alcohol spectrum disorders. We determined whether the microglial extracellular vesicle exosome is involved in the ethanol-induced neuronal death of the β-endorphin neuron. Extracellular vesicles were prepared from hypothalamic tissues collected from postnatal rats (both males and females) fed daily with 2.

View Article and Find Full Text PDF

Background: Alcohol exposures in utero have been shown to alter immune system functions in the offspring which persists into adulthood. However, it is not apparent why the in utero alcohol effect on the immune system persists into adulthood of fetal alcohol-exposed offspring. The objective of this study was to determine the long-term effects of fetal alcohol exposure on the production of interferon-ϒ (IFN-ϒ), a cytokine known to regulate both innate and adaptive immunity.

View Article and Find Full Text PDF

Background: We have recently shown that binge or heavy levels of alcohol drinking increase deoxyribonucleic acid (DNA) methylation and reduce gene expression of proopiomelanocortin (POMC) and period 2 (PER2) in adult human subjects (Gangisetty et al., Alcohol Clin Exp Res, 43, 2019, 212). One hypothesis would be that methylation of these 2 genes is consistently associated with alcohol exposure and could be used as biomarkers to predict risk of prenatal alcohol exposure (PAE).

View Article and Find Full Text PDF

Alternative splicing and expression of splice variants of genes in the brain may lead to the modulation of protein functions, which may ultimately influence behaviors associated with alcohol dependence and neurotoxicity. We recently showed that ethanol exposure can lead to pre-mRNA missplicing of Mcl-1, a pro-survival member of the Bcl-2 family, by downregulating the expression levels of serine/arginine rich splicing factor 1 (SRSF1). Little is known about the physiological expression of these isoforms in neuronal cells and their role in toxicity induced by alcohol exposure during the developmental period.

View Article and Find Full Text PDF

Growing evidence has shown that developmental alcohol exposure induces central nervous system inflammation and microglia activation, which may contribute to long-term health conditions, such as fetal alcohol spectrum disorders. These studies sought to investigate whether neonatal alcohol exposure during postnatal days (PND) 2-6 in rats (third trimester human equivalent) leads to long-term disruption of the neuroimmune response by microglia. Exposure to neonatal alcohol resulted in acute increases in activation and inflammatory gene expression in hypothalamic microglia including tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6).

View Article and Find Full Text PDF

Background: Epigenetic modifications of a gene have been shown to play a role in maintaining a long-lasting change in gene expression. We hypothesize that alcohol's modulating effect on DNA methylation on certain genes in blood is evident in binge and heavy alcohol drinkers and is associated with alcohol motivation.

Methods: Methylation-specific polymerase chain reaction (PCR) assays were used to measure changes in gene methylation of period 2 (PER2) and proopiomelanocortin (POMC) genes in peripheral blood samples collected from nonsmoking moderate, nonbinging, binge, and heavy social drinkers who participated in a 3-day behavioral alcohol motivation experiment of imagery exposure to either stress, neutral, or alcohol-related cues, 1 per day, presented on consecutive days in counterbalanced order.

View Article and Find Full Text PDF

Excess alcohol use is known to promote development of aggressive tumors in various tissues in human patients, but the cause of alcohol promotion of tumor aggressiveness is not clearly understood. We used an animals model of fetal alcohol exposure that is known to promote tumor development and determined if alcohol programs the pituitary to acquire aggressive prolactin-secreting tumors. Our results show that pituitaries of fetal alcohol-exposed rats produced increased levels of intra-pituitary aromatase protein and plasma estrogen, enhanced pituitary tissue growth, and upon estrogen challenge developed prolactin-secreting tumors (prolactinomas) that were hemorrhagic and often penetrated into the surrounding tissue.

View Article and Find Full Text PDF

In recent years, experimental studies demonstrated negative impacts of impaired body stress response on colonic pathologies. In this study, we tested if reducing body stress response by the use of β-endorphin (BEP) neuronal transplants in the hypothalamus suppresses pre-neoplastic and neoplastic lesions. Colon cancer was induced by injecting 1,2-dimethylhydrazine (DMH) for sixteen weeks in Sprague Dawley rats with BEP neuron transplants or control neuron transplants, and their colonic histopathologies, colon tissue levels of pro-inflammatory cytokines and epithelial-mesenchymal transition (EMT) proteins and splenic levels of cytotoxic proteins were measured.

View Article and Find Full Text PDF

Background: Alcohol consumption during pregnancy is a significant public health problem and can result in a continuum of adverse outcomes to the fetus known as fetal alcohol spectrum disorders (FASD). Subjects with FASD show significant neurological deficits, ranging from microencephaly, neurobehavioral, and mental health problems to poor social adjustment and stress tolerance. Neurons are particularly sensitive to alcohol exposure.

View Article and Find Full Text PDF

Alcohol can permeate virtually every organ and tissue in the body, resulting in tissue injury and organ dysfunction. Considerable evidence indicates that alcohol abuse results in clinical abnormalities of one of the body's most important systems, the endocrine system. This system ensures proper communication between various organs, also interfacing with the immune and nervous systems, and is essential for maintaining a constant internal environment.

View Article and Find Full Text PDF

Fetal alcohol exposure (FAE) is known to increase prolactin (PRL) secretion from the pituitary lactotropes. In this study, we determined whether microRNAs (miRs) are involved in FAE-induced alteration in PRL release. We employed a rat animal model of FAE involving feeding pregnant Fisher 344 rats with a liquid diet containing 6.

View Article and Find Full Text PDF

Excessive alcohol exposure has severe health consequences, and clinical and animal studies have demonstrated that disruptions in the epigenome of somatic cells, such as those in brain, are an important factor in the development of alcohol-related pathologies, such as alcohol-use disorders (AUDs) and fetal alcohol spectrum disorders (FASDs). It is also well known that alcohol-related health problems are passed down across generations in human populations, but the complete mechanisms for this phenomenon are currently unknown. Recent studies in animal models have suggested that epigenetic factors are also responsible for the transmission of alcohol-related pathologies across generations.

View Article and Find Full Text PDF