Publications by authors named "Dipak Maity"

Ultra-low magnetic field sensing is emerging as a tool for materials' diagnostics, particularly for the operando studies of electrochemical systems. A magnetic metrology system having the capability of sensing fields as low as ∼1.88 pT has been setup for such studies using a commercial atomic magnetometer.

View Article and Find Full Text PDF

In the present work, the ultrafast nonlinear optical (NLO) response of some molybdenum disulfide (MoS), fluorinated graphene (FG), and FG/MoS heterostructure thin films was studied using the -scan and optical Kerr effect techniques employing femtosecond laser pulses at different excitation wavelengths (i.e., 400, 570, 610, 660, 800, and 1200 nm).

View Article and Find Full Text PDF

In the biomedical industry, nanoparticles (NPs-exclusively small particles with size ranging from 1-100 nanometres) are recently employed as powerful tools due to their huge potential in sophisticated and enhanced cancer theragnostic (i.e. therapeutics and diagnostics).

View Article and Find Full Text PDF

RNA interference is one of the emerging methodologies utilized in the treatment of a wide variety of diseases including cancer. This method specifically uses therapeutic RNAs (TpRNAs) like small interfering RNAs (siRNAs) to regulate/silence the cancer-linked genes, thereby minimizing the distinct activities of the cancer cells while aiding in their apoptosis. But, many complications arise during the transport/delivery of these TpRNAs that include poor systemic circulation, instability/degradation inside the body environment, no targeting capacity and also low cellular internalization.

View Article and Find Full Text PDF

Owing to their great promise of high energy density, the development of safer lithium metal batteries (LMBs) has become the necessity of the hour. Herein, a scalable method based on conventional Celgard membrane (CM) separator modification is adopted to develop high-rate (10 mA cm) dendrite-free LMBs of extended cyclability (>1000 hours, >1500 cycles with 3 mA cm, the bare fails within 50 cycles) with low over potential losses. The CM modification method entails the deposition of thin coatings of (≈6.

View Article and Find Full Text PDF

Nanotheranostics is a promising field that combines the benefits of diagnostic and treatment into a single nano-platform that not only administers treatment but also allows for real-time monitoring of therapeutic response, decreasing the possibility of under/over-drug dosing. Furthermore, developing smart delivery systems (SDSs) for cancer theranostics that can take advantage of various tumour microenvironment (TME) conditions (such as deformed tumour vasculature, various over-expressed receptor proteins, reduced pH, oxidative stress, and resulting elevated glutathione levels) can aid in achieving improved pharmacokinetics, higher tumour accumulation, enhanced antitumour efficacy, and/or decreased side effects and multidrug resistance (MDR) inhibition. Polymeric nanoparticles (PNPs) are being widely investigated in this regard due to their unique features such as small size, passive/active targeting possibility, better pharmaceutical kinetics and biological distribution, decreased adverse reactions of the established drugs, inherent inhibitory properties to MDR efflux pump proteins, as well as the feasibility of delivering numerous therapeutic substances in just one design.

View Article and Find Full Text PDF

Substitutional doping is a most promising approach to manipulate the electronic and optical properties of two-dimensional (2D) transition metal dichalcogenides (TMDCs). In addition to inducing magnetism, vanadium (V) doping can lead to semiconductor-metal transition in TMDCs. However, the dynamics of charge carriers that governs the optoelectronic properties of doped TMDCs has been rarely revealed.

View Article and Find Full Text PDF

Monolayers of MoSwith tunable bandgap and valley positions are highly demanding for their applications in opto-spintronics. Herein, selenium (Se) and vanadium (V) co-doped MoSmonolayers (vanadium doped MoSSe(V-MoSSe)) are developed and showed their variations in the electronic and optical properties with dopant content. Vanadium gets substitutionally (in place of Mo) doped within the MoSlattice while selenium doped in place of sulfur, as shown by a detailed microstructure and spectroscopy analyses.

View Article and Find Full Text PDF

Two-dimensional-zero-dimensional plasmonic hybrids involving defective graphene and transition metals (DGR-TM) have drawn significant interest due to their near-field plasmonic effects in the wide range of the UV-vis-NIR spectrum. In the present work, we carried out extensive investigations on resonance Raman spectroscopy (RRS) and localized surface plasmon resonance (LSPR) from the various DGR-TM hybrids (Au, Ag, and Cu) using micro-Raman, spatial Raman mapping analysis, high-resolution transmission electron microscopy (HRTEM), and LSPR absorption measurements on defective CVD graphene layers. Further, electric field (E) mappings of samples were calculated using the finite domain time difference (FDTD) method to support the experimental findings.

View Article and Find Full Text PDF

Cancer is recognized as one of the world's deadliest diseases, with more than 10 million new cases each year. Over the past 2 decades, several studies have been performed on cancer to pursue solutions for effective treatment. One of the vital benefits of utilizing nanoparticles (NPs) in cancer treatment is their high adaptability for modification and amalgamation of different physicochemical properties to boost their anti-cancer activity.

View Article and Find Full Text PDF

Different therapeutic practices for treating cancers have significantly evolved to compensate and/or overcome the failures in conventional methodologies. The demonstrated potentiality in completely inhibiting the tumors and in preventing cancer relapse has made nucleic acids therapy (NAT)/gene therapy as an attractive practice. This has been made possible because NAT-based cancer treatments are highly focused on the fundamental mechanisms - i.

View Article and Find Full Text PDF

The current agricultural sector is not only in its most vulnerable state but is also becoming a threat to our environment due to expanding population and growing food demands along with worsening climatic conditions. In addition, numerous agrochemicals presently being used as fertilizers and pesticides have low efficiency and high toxicity. However, the rapid growth of nanotechnology has shown great promise to tackle these issues replacing conventional agriculture industries.

View Article and Find Full Text PDF
Article Synopsis
  • Plant nutrition is essential for crop productivity and food security, but using chemical fertilizers and pesticides can harm the environment and disrupt ecological balance.
  • Biofertilizers and biopesticides offer some ecological benefits, and recent advances in nanotechnology present sustainable alternatives like nanofertilizers and nanopesticides, which provide slow release and eco-friendly options tailored to specific crops.
  • However, caution is needed with nanomaterials as they may pose health risks due to accumulation in humans and toxicity in the environment, leading to potential economic burdens.
View Article and Find Full Text PDF

Modern-day search for the novel agents (their preparation and consequent implementation) to effectively treat the cancer is mainly fuelled by the historical failure of the conventional treatment modalities. Apart from that, the complexities such as higher rate of cell mutations, variable tumor microenvironment, patient-specific disparities, and the evolving nature of cancers have made this search much stronger in the latest times. As a result of this, in about two decades, the theranostic nanoparticles (TNPs) - i.

View Article and Find Full Text PDF

Superparamagnetic iron oxide nanoparticles (SPIONs) have found applications in the magnetic fluid hyperthermia (MFH) due to their unique magnetic properties, chemical stability and biocompatibility. However, challenges exist in attaining high heating efficiencies of the SPIONs under the applied alternating magnetic fields below Hergt's biological safety limit. Here, we present synthesis of single surfactant (pyromellitic acid (PMA)/2-aminoterephthalic acid (ATA)) and dual surfactants (PMA-ATA) coated SPIONs via chemical co-precipitation method and characterization to determine their phase purity, surface coatings and particle sizes.

View Article and Find Full Text PDF

In this work, we report the synthesis of hydrophilic and surface-functionalized superparamagnetic iron oxide nanoparticles (SPIOs) to utilize them as nanomedicines for treating liver cancer via magnetic fluid hyperthermia (MFH)-based thermotherapy. For this purpose, initially, we have synthesized the SPIOs through co-precipitation/thermolysis methods, followed by in situ surface functionalization with short-chained molecules, such as 1,4-diaminobenzene (14DAB), 4-aminobenzoic acid (4ABA) and 3,4-diaminobenzoic acid (34DABA) and their combination with terephthalic acid (TA)/2-aminoterephthalic acid (ATA)/trimesic acid (TMA)/pyromellitic acid (PMA) molecules. The as-prepared SPIOs are investigated for their structure, morphology, water dispersibility, and magnetic properties.

View Article and Find Full Text PDF

We have systematically studied heating efficiencies (via specific absorption rate-SAR/intrinsic loss power-ILP) of carboxyl (terephthalic acid-TA) functionalized hydrophilic SPIONs based ferrofluids (with good biocompatibility/high magnetization) and influence of following key factors in magnetic fluid hyperthermia (MFH): (i) alternating magnetic fields (AMFs - H)/frequencies (f) - chosen below/above Hergt's biological safety limit, (ii) concentrations (0.5-8 mg/ml) and (iii) dispersion media (water, a cell-culture medium and triethylene glycol (TEG)) for in vitro cancer therapy. In calorimetric MFH, aqueous ferrofluids have displayed excellent time-dependent temperature rise for the applied AMFs, which resulted in high SAR ranging from 23.

View Article and Find Full Text PDF

Recently superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively used in cancer therapy and diagnosis (theranostics) via magnetic targeting, magnetic resonance imaging, etc. due to their remarkable magnetic properties, chemical stability, and biocompatibility. However, the magnetic properties of SPIONs are influenced by various physicochemical and synthesis parameters.

View Article and Find Full Text PDF

Core-shell hydrophilic superparamagnetic iron oxide (SPIO) nanoparticles, surface functionalized with either terephthalic acid or 2-amino terephthalic acid, showed large negative MRI contrast ability, validating the advantage of using low molecular weight and π-conjugated canopies for engineering functional nanostructures with superior performances.

View Article and Find Full Text PDF

We synthesized vitamin E TPGS (d-α-Tocopheryl-co-poly(ethylene glycol) 1000 succinate) micelles for superparamagnetic iron oxides formulation for nanothermotherapy and magnetic resonance imaging (MRI), which showed better thermal and magnetic properties, and in vitro cellular uptake and lower cytotoxicity as well as better in vivo therapeutic and imaging effects in comparison with the commercial Resovist and the Pluronic F127 micelles reported in the recent literature. The superparamagnetic iron oxides originally coated with oleic acid and oleylamine were formulated in the core of the TPGS micelles using a simple solvent-exchange method. The IOs-loaded TPGS showed greatest colloidal stability due to the critical micelle concentration (CMC) of vitamin E TPGS.

View Article and Find Full Text PDF

This work developed a multimodal imaging system by co-encapsulating superparamagnetic iron oxides (IOs) and quantum dots (QDs) in the nanoparticles of poly (lactic acid) - d-α-tocopheryl polyethylene glycol 1000 succinate (PLA-TPGS) for concurrent imaging of the magnetic resonance imaging (MRI) and the fluorescence imaging to combine their advantages and to overcome their disadvantages as well as to promote a sustained and controlled imaging with passive targeting effects to the diseased cells. The QDs and IOs-loaded PLA-TPGS NPs were prepared by a modified nanoprecipitation method, which were then characterized for their size and size distribution, zeta potential and the imaging agent encapsulation efficiency. The transmission electron microscopy (TEM) images showed direct evidence for the well-dispersed distribution of the QDs and IOs within the PLA-TPGS NPs.

View Article and Find Full Text PDF

Aims: Superparamagnetic magnetite nanoparticles have been under intensive investigation in nanomedicine. However, it is still a challenge to synthesize high-quality water-stable magnetite nanoparticles for better magnetic performance and less side effects in medical MRI and nanothermotherapy.

Materials & Methods: We successfully synthesized hydrophilic magnetite nanoparticles through thermal decomposition of Fe(acac)(3) in triethylene glycol, which were coated with a triethylene glycol layer and thus demonstrated excellent water stability.

View Article and Find Full Text PDF

We developed a strategy to formulate supraparamagnetic iron oxides (SPIOs) in nanoparticles (NPs) of biodegradable copolymer made up of poly(lactic acid) (PLA) and d-alpha-tocopherol polyethylene glycol 1000 succinate (TPGS) for medical imaging by magnetic resonance imaging (MRI) of high contrast and low side effects. The IOs-loaded PLA-TPGS NPs (IOs-PNPs) were prepared by the single emulsion method and the nanoprecipitation method. Effects of the process parameters such as the emulsifier concentration, IOs loading in the nanoparticles, and the solvent to non-solvent ratio on the IOs distribution within the polymeric matrix were investigated and the formulation was then optimized.

View Article and Find Full Text PDF