Publications by authors named "Dipak K Dube"

Tropomyosin (TPM) is an essential sarcomeric component, stabilizing the thin filament and facilitating actin's interaction with myosin. In mammals, including humans, there are four TPM genes (TPM1, TPM2, TPM3, and TPM4) each of which generates a multitude of TPM isoforms via alternative splicing and using different promoters. In this study, we have examined the expression of transcripts as well as proteins of various sarcomeric TPM isoforms during human inducible pluripotent stem cell differentiation into cardiomyocytes.

View Article and Find Full Text PDF

Old world monkeys separated from the great apes, including the ancestor of humans, about 25 million years ago, but most of the genes in humans and various nonhuman primates are quite similar even though their anatomical appearances are quite different. Like other mammals, primates have four tropomyosin genes (TPM1, TPM2, TPM3, and TPM4) each of which generates a multitude of TPM isoforms via alternative splicing. Only TPM1 produces two sarcomeric isoforms (TPM1 and TPM1), and TPM2, TPM3, and TPM4 each generate one sarcomeric isoform.

View Article and Find Full Text PDF

Details of sarcomeric protein assembly during de novo myofibril formation closely resemble myofibrillogenesis in skeletal and cardiac myocytes in birds, rodents, and zebrafish. The arrangement of proteins during myofibrillogenesis follows a three-step process: beginning with premyofibrils, followed by nascent myofibrils, and concluding with mature myofibrils (reviewed in Sanger et al., 2017).

View Article and Find Full Text PDF

In the three-step myofibrillogenesis model, mature myofibrils are formed through two intermediate structures: premyofibrils and nascent myofibrils. We have recently reported that several inhibitors of the Ubiquitin Proteosome System, for example, MG-132, and DBeQ, reversibly block progression of nascent myofibrils to mature myofibrils. In this investigation, we studied the effects of MG132 and DBeQ on the expression of various myofibrillar proteins including actin, myosin light and heavy chains, tropomyosin, myomesin, and myosin binding protein-C in cultured embryonic quail myotubes by western blotting using two loading controls-α-tubulin and glyceraldehyde 3-phosphate dehydrogenase (GAPDH).

View Article and Find Full Text PDF

In mammals, there are four tropomyosin (TPM) genes (TPM1, TPM2, TPM3, and TPM4) each of which generate a multitude of alternatively spliced mRNAs. TPM isoform diversity in bovine unlike in humans are not well characterized. The purpose of this investigation is to perform an extensive analysis of the expression of both transcripts and corresponding protein of sarcomeric TPMs in bovine strated muscles.

View Article and Find Full Text PDF

De novo assembly of myofibrils in vertebrate cross-striated muscles progresses in three distinct steps, first from a minisarcomeric alignment of several nonmuscle and muscle proteins in premyofibrils, followed by insertions of additional proteins and increased organization in nascent myofibrils, ending with mature contractile myofibrils. In a search for controls of the process of myofibril assembly, we discovered that the transition from nascent to mature myofibrils could be halted by inhibitors of three distinct functions of the ubiquitin proteasome system (UPS). First, inhibition of pathway to E3 Cullin ligases that ubiquitinate proteins led to an arrest of myofibrillogenesis at the nascent myofibril stage.

View Article and Find Full Text PDF

In mammals, four tropomyosin genes TPM1, TPM2, TPM3, and TPM4 are known. One isoform of the TPM3 gene, encoding 285 amino acid residues designated as TPM3α, has been reported. TPM3α protein expression in human hearts is not definitively established.

View Article and Find Full Text PDF

The formation of myofibrils was analyzed in neonatal mouse cardiomyocytes grown in culture and stained with fluorescent antibodies directed against myofibrillar proteins. The cardiomyocyte cultures also were exposed to siRNA probes to test the role of nonmuscle myosin IIB expression in the formation of myofibrils. In culture, new myofibrils formed in the spreading cell margins surrounding contractile myofibrils previously assembled in utero.

View Article and Find Full Text PDF

The chicken has been used since the 1980s as an animal model for developmental studies regarding tropomyosin isoform diversity in striated muscles, however, the pattern of expression of transcripts as well as the corresponding TPM proteins of various tropomyosin isoforms in avian hearts are not well documented. In this study, using conventional and qRT-PCR, we report the expression of transcripts for various sarcomeric TPM isoforms in striated muscles through development. Transcripts of both TPM1α and TPM1κ, the two sarcomeric isoforms of the TPM1 gene, are expressed in embryonic chicken hearts but disappear in post hatch stages.

View Article and Find Full Text PDF

Cloning and sequencing of various tropomyosin isoforms expressed in chickens have been described since the early 1980s. However, to the best of our knowledge, this is the first report on the molecular characterization and the expression of the sarcomeric isoform of the TPM3 gene in cardiac and skeletal muscles from developing as well as adult chickens. Expression of TPM3α was performed by conventional RT-PCR as well as qRT-PCR using relative expression (by ΔC as well as ΔΔC methods) and by determining absolute copy number.

View Article and Find Full Text PDF

In order to better understand the training and athletic activity of horses, we must have complete understanding of the isoform diversity of various myofibrillar protein genes like tropomyosin. Tropomyosin (TPM), a coiled-coil dimeric protein, is a component of thin filament in striated muscles. In mammals, four TPM genes (TPM1, TPM2, TPM3, and TPM4) generate a multitude of TPM isoforms via alternate splicing and/or using different promoters.

View Article and Find Full Text PDF

Tropomyosin is a component of thin filaments that constitute myofibrils, the contractile apparatus of striated muscles. In vertebrates, except for fish, four TPM genes TPM1, TPM2, TPM3, and TPM4 are known. In zebrafish, there are six TPM genes that include the paralogs of the TPM1 (TPM1-1 and TPM1-2), the paralogs of the TPM4 gene (TPM4-1 and TPM4-2), and the two single copy genes TPM2 and TPM3.

View Article and Find Full Text PDF

A known HIV-1-positive intravenous drug user was found to be human T cell lymphoma/leukemia virus-II (HTLV-II) DNA positive by polymerase chain reaction but seronegative in a screening ELISA. He was consistently DNA positive but took 2 years to fully seroconvert. Sequencing of the HTLV-II strain in his cultured T lymphocytes indicated that it is a prototypical type A strain with no major differences in the long terminal repeat DNA sequence, nor major amino acid differences in the Gag, Env, Tax, and Rex proteins.

View Article and Find Full Text PDF

In this chapter, we present the current knowledge on de novo assembly, growth, and dynamics of striated myofibrils, the functional architectural elements developed in skeletal and cardiac muscle. The data were obtained in studies of myofibrils formed in cultures of mouse skeletal and quail myotubes, in the somites of living zebrafish embryos, and in mouse neonatal and quail embryonic cardiac cells. The comparative view obtained revealed that the assembly of striated myofibrils is a three-step process progressing from premyofibrils to nascent myofibrils to mature myofibrils.

View Article and Find Full Text PDF

In mammals, tropomyosin is encoded by four known TPM genes (TPM1, TPM2, TPM3, and TPM4) each of which can generate a number of TPM isoforms via alternative splicing and/or using alternate promoters. In humans, the sarcomeric isoform(s) of each of the TPM genes, except for the TPM4, have been known for a long time. Recently, on the basis of computational analyses of the human genome sequence, the predicted sequence of TPM4 has been posted in GenBank.

View Article and Find Full Text PDF

In humans, four tropomyosin genes (TPM1, TPM2, TPM3, and TPM4) are known to produce a multitude of isoforms via alternate splicing and/or using alternate promoters. Expression of tropomyosin has been shown to be modulated at both the transcription and the translational levels. Tropomyosins are known to make up some of the stress fibers of human epithelial cells and differences in their expression has been demonstrated in malignant breast epithelial cell lines compared to 'normal' breast cell lines.

View Article and Find Full Text PDF

Nine malignant breast epithelial cell lines and 3 normal breast cell lines were examined for stress fiber formation and expression of TPM1 isoform-specific RNAs and proteins. Stress fiber formation was strong (++++) in the normal cell lines and varied among the malignant cell lines (negative to +++). Although TPM1γ and TPM1δ were the dominant transcripts of TPM1, there was no clear evidence for TPM1δ protein expression.

View Article and Find Full Text PDF

The premyofibril model proposes a three-stage process for the de novo assembly of myofibrils in cardiac and skeletal muscles: premyofibrils to nascent myofibrils to mature myofibrils. FRAP experiments and jasplakinolide, a drug that stabilizes F-actin, permitted us to determine how decreasing the dynamics of actin filaments affected the dynamics of tropomyosin, troponin-T, troponin-C, and two Z-Band proteins (alpha-actinin, FATZ) in premyofibrils versus mature myofibrils. Jasplakinolide reduced markedly the dynamics of actin in premyofibrils and in mature myofibrils in skeletal muscles.

View Article and Find Full Text PDF

Several missense mutations in the Z-band protein, myotilin, have been implicated in human muscle diseases such as myofibrillar myopathy, spheroid body myopathy, and distal myopathy. Recently, we have reported the cloning of chicken myotilin cDNA. In this study, we have investigated the expression of myotilin in cross-striated muscles from developing chicken by qRT-PCR and in situ hybridizations.

View Article and Find Full Text PDF

The tropomyosin (TM) gene family produces a set of related TM proteins with important functions in striated and smooth muscle, and nonmuscle cells. In vertebrate striated muscle, the thin filament consists largely of actin, TM, the troponin (Tn) complex (Tn-I, Tn-C and Tn-T), and tropomodulin (Tmod) and is responsible for mediating Ca(2+) control of muscle contraction and relaxation. There are four known genes (designated as TPM1, TPM2, TPM3, and TPM4) for TM in vertebrates.

View Article and Find Full Text PDF

We evaluated the effect of shz-1, a cardiogenic molecule, on the expression of various tropomyosin (TM) isoforms in the Mexican axolotl (Ambystoma mexicanum) hearts. qRT-PCR data show a ~1.5-fold increase in cardiac transcripts of the Nkx2.

View Article and Find Full Text PDF

We have investigated the expression of TPM1 α and TPM1 κ in mouse striated muscles. TPM1 α and TMP1 κ were amplified from the cDNA of mouse heart by using conventional RT-PCR. We have cloned the PCR amplified DNA and determined the nucleotide sequences.

View Article and Find Full Text PDF

The anatomy, function and embryonic development of the heart have been of interest to clinicians and researchers alike for centuries. A beating heart is one of the key criteria in defining life or death in humans. An understanding of the multitude of genetic and functional elements that interplay to form such a complex organ is slowly evolving with new genetic, molecular and experimental techniques.

View Article and Find Full Text PDF

Background: Simian T-cell lymphoma/leukemia virus-1 (STLV-1) infection of non-human primates can serve as a model for human T-cell lymphoma/leukemia virus infection.

Methods: Two tantalus and 2 patas monkeys were transfused with intraspecies whole blood infected with STLV-1. Infection was determined by ELISA, western blot and DNA PCR analyses.

View Article and Find Full Text PDF

The process of Z-band assembly begins with the formation of small Z-bodies composed of a complex of proteins rich in alpha-actinin. As additional proteins are added to nascent myofibrils, Z-bodies are transformed into continuous bands that form coherent discs of interacting proteins at the boundaries of sarcomeres. The steps controlling the transition of Z-bodies to Z-bands are not known.

View Article and Find Full Text PDF