Syncytiotrophoblast derived Extracellular Vesicles (STBEV) from normal pregnancy (NP) have previously been shown to interact with circulating monocytes and B cells and induce pro-inflammatory cytokine release. Early-onset preeclampsia (EOPE) is associated with an exacerbated inflammatory response, yet there is little data regarding late-onset PE (LOPE) and immune function. Here, using a macrophage/monocyte cell line THP-1, we investigated the inflammatory potential of STBEV, comprising medium/large-STBEV (>200nm) and small-STBEV (<200nm), isolated from LOPE (n=6) and normal (NP) (n=6) placentae via dual-lobe placental perfusion and differential centrifugation.
View Article and Find Full Text PDFIntroduction: Preeclampsia (PE) is associated with an exaggerated maternal systemic inflammatory response. Throughout gestation, the placenta releases extracellular vesicles through the syncytiotrophoblast layer (STB) into the maternal circulation and this is increased in PE. Expression of Siglec-6, a transmembrane receptor of molecular weight 50 KDa, is upregulated in PE placental tissue.
View Article and Find Full Text PDFIntroduction: The aim was to investigate syncytiotrophoblast extracellular vesicle (STBEV) uptake mechanisms by primary endothelial cells, the effects on gene expression, cell activation as well as the effect of aspirin.
Methods: The STBEVs were derived using the placental perfusion system, from normal or preeclamptic placentas. Endothelial uptake was analysed with flow cytometry.
Vascular complications in pregnancy (e.g. preeclampsia) are a major source of maternal and foetal morbidity and mortality, and may be due to excessive release of placental syncytiotrophoblast-derived extracellular vesicles (STBEVs) into the maternal circulation.
View Article and Find Full Text PDFGestational diabetes mellitus (GDM) is the most common metabolic disorder in pregnancy and is characterized by insulin resistance and decreased circulating glucagon-like peptide-1 (GLP-1). GDM resolves rapidly after delivery implicating the placenta in the disease. This study examines the biological functions that cause this pathology.
View Article and Find Full Text PDFFetal development may be compromised by adverse events at the placental interface between mother and fetus. However, it is still unclear how the communication between mother and fetus occurs through the placenta. In vitro - models of the human placental barrier, which could help our understanding and which recreate three-dimensional (3D) structures with biological functionalities and vasculatures, have not been reported yet.
View Article and Find Full Text PDFSyncytiotrophoblast extracellular vesicles (STBEVs), released into the maternal circulation during pregnancy, have been shown to affect vascular function; however, the mechanism remains unknown. In rats, STBEVs were shown to reduce endothelium-mediated vasodilation via lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), a multi-ligand scavenger receptor that has been associated with vascular dysfunction. Recently, LOX-1 was shown to interact with the angiotensin II type 1 receptor (AT-1).
View Article and Find Full Text PDFIntroduction: Placental syncytiotrophoblast (STB) release extracellular vesicles (STB-EVs) that communicate physiological and pathological placental signals to the maternal organs. STB-EV release also increases in preeclampsia (PE). Here we explored the cargo of PP13 in STB-EVs from PE versus control placentas.
View Article and Find Full Text PDFFluorescence nanoparticle tracking analysis (fl-NTA) allows for accurate sizing, counting, and phenotyping of extracellular vesicles (EV). Here, we present two protocols for the analysis of EVs using fl-NTA, highlighting the potential pitfalls and challenges. The first protocol utilizes CellMask Orange™ (CMO) as a general membrane marker to label EVs derived from plasma.
View Article and Find Full Text PDFDuring the pregnancy associated syndrome preeclampsia (PE), there is increased release of placental syncytiotrophoblast extracellular vesicles (STBEVs) and free foetal haemoglobin (HbF) into the maternal circulation. In the present study we investigated the uptake of normal and PE STBEVs by primary human coronary artery endothelial cells (HCAEC) and the effects of free HbF on this uptake. Our results show internalization of STBEVs into primary HCAEC, and transfer of placenta specific miRNAs from STBEVs into the endoplasmic reticulum and mitochondria of these recipient cells.
View Article and Find Full Text PDFSyncytiotrophoblast extracellular vesicles (STBEVs) are placenta derived particles that are released into the maternal circulation during pregnancy. Abnormal levels of STBEVs have been proposed to affect maternal vascular function. The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a multi-ligand scavenger receptor.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
August 2017
Objectives: The liver X receptors (LXRs) and farnesoid X receptor (FXR) have been identified in human platelets. Ligands of these receptors have been shown to have nongenomic inhibitory effects on platelet activation by platelet agonists. This, however, seems contradictory with the platelet hyper-reactivity that is associated with several pathological conditions that are associated with increased circulating levels of molecules that are LXR and FXR ligands, such as hyperlipidemia, type 2 diabetes mellitus, and obesity.
View Article and Find Full Text PDFPreeclampsia, a multisystem hypertensive disorder of pregnancy, is associated with increased systemic vascular resistance. Placentae from patients with preeclampsia have reduced levels of endothelial nitric oxide synthase (eNOS) and, thus, less nitric oxide (NO). Syncytiotrophoblast extracellular vesicles (STBEV), comprising microvesicles (STBMV) and exosomes, carry signals from the syncytiotrophoblast to the mother.
View Article and Find Full Text PDFThe ability to directly monitor the status of the placenta throughout pregnancy would be a major advance in both general and personalized obstetric care, allowing treatments to be tailored to the dynamic changes that can occur in gestation. Syncytiotrophoblast extracellular vesicles (STBEV) are membrane bound vesicles, released from the surface of the placenta directly into the maternal circulation, in the form of exosomes, microvesicles and apoptotic bodies. They carry many syncytiotrophoblast derived factors such as proteins, lipids, glycans and nucleic acids, which together could dynamically signal to the mother the status of the placenta.
View Article and Find Full Text PDFProblem: We have previously found that C1q is constitutively expressed by invading trophoblast and endothelial cells of decidua and contributes to vascular and tissue remodeling. Based on these findings, we sought to determine whether there were changes in the circulating level of C1q that may be used as a diagnostic and predictive marker of preeclampsia.
Method Of Study: We measured the levels of C1q, C4, and complement activation products in serum or plasma of normal pregnant women and preeclamptic patients from different cohorts.
The release of extracellular vesicles (EV) by the syncytiotrophoblast (STB) may be an important mechanism by which the placenta signals to the mother. STB derived EV (STBEV) are comprised predominantly of exosomes (50-150nm) and microvesicles (100-1000nm) that contain bioactive mediators such as proteins, nucleic acids and lipids. They, along with larger syncytial nuclear aggregates are released by the STB into the maternal circulation throughout gestation in normal pregnancy where they appear to have an immunoregulatory role, inhibiting T cell and NK cell responses.
View Article and Find Full Text PDFPre-eclampsia (PE) complicates around 3% of all pregnancies and is one of the most common causes of maternal mortality worldwide. The pathophysiology of PE remains unclear however its underlying cause originates from the placenta and manifests as raised blood pressure, proteinuria, vascular or systemic inflammation and hypercoagulation in the mother. Women who develop PE are also at significantly higher risk of subsequently developing cardiovascular (CV) disease.
View Article and Find Full Text PDFProblem: The pregnancy-associated disease preeclampsia is related to the release of syncytiotrophoblast extracellular vesicles (STBEV) by the placenta. To improve functional research on STBEV, reliable and specific methods are needed to quantify them. However, only a few quantification methods are available and accepted, though imperfect.
View Article and Find Full Text PDFIntroduction: Optical techniques are routinely used to size and count extracellular vesicles (EV). For comparison of data from different methods and laboratories, suitable calibrators are essential. A suitable calibrator must have a refractive index (RI) as close to that of EV as possible but the RI of EV is currently unknown.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are membrane-bound complexes secreted from cells under both physiological and pathological conditions. They contain proteins, nucleic acids and lipids and act as messengers for cell-cell communication and signalling, particularly between immune cells. EV research is a rapidly evolving and expanding field, and it appears that all biological fluids contain very large numbers of EVs; they are produced from all cells that have been studied to date, and are known to have roles in several reproductive processes.
View Article and Find Full Text PDFSome psychiatric diseases in children and young adults are thought to originate from adverse exposures during foetal life, including hypoxia and hypoxia/reoxygenation. The mechanism is not understood. Several authors have emphasised that the placenta is likely to play an important role as the key interface between mother and foetus.
View Article and Find Full Text PDFEur J Obstet Gynecol Reprod Biol
January 2014
Objectives: Cell injury releases actin, the most abundant cell protein. Gelsolin and vitamin D binding protein (VDBP) together depolymerise and clear cell-free actin. Impaired actin clearance is associated with several diseases and correlates with clinical outcome.
View Article and Find Full Text PDFExcessive release of syncytiotrophoblast extracellular vesicles (STBMs) from the placenta into the maternal circulation may contribute to the systemic inflammation that is characteristic of pre-eclampsia (PE). Other intravascular cells types (platelets, leukocytes, red blood cells [RBCs], and endothelium) may also be activated and release extracellular vesicles (EVs). We developed a multicolor flow cytometry antibody panel to enumerate and phenotype STBMs in relation to other EVs in plasma from nonpregnant (NonP) and normal pregnant (NormP) women, and women with late-onset PE.
View Article and Find Full Text PDFCurr Hypertens Rep
December 2013
Preeclampsia remains a significant obstetric risk worldwide. The pathophysiology of preeclampsia is complex, with multiple stages involving maladaptations in both placental and maternal physiology. The placenta links the pre-clinical stage of impaired remodeling of the uterine vasculature, occurring in early pregnancy, to the later clinical stages characterised by the maternal syndrome of hypertension and proteinuria.
View Article and Find Full Text PDFBackground: The placental syncytiotrophoblast releases micro and nanovesicles (STBM), into the maternal circulation in normal pregnancy and in increased amounts in pre-eclampsia (PE), which have proinflammatory and antiangiogenic activity and are implicated in PE pathophysiology. Better characterisation of STBM is essential to understand their role in PE.
Methods And Results: STBM prepared by placental lobe dual perfusion (pSTBM) and mechanical disruption (mSTBM) were analysed by four colour flow cytometry (4CFC), nanoparticle tracking analysis (NTA) and Western blotting to determine vesicle size, purity and Flt-1 and endoglin (Eng) expression.