Publications by authors named "Dion O'Cuinneagain"

The COL5A1 and COL12A1 variants are independently associated with modulating the risk of anterior cruciate ligament (ACL) rupture in females. The objective of this study was to further investigate if COL3A1 and COL6A1 variants independently, as well as, collagen gene-gene interactions, modulate ACL rupture risk. Three hundred and thirty-three South African (SA, n = 242) and Polish (PL, n = 91) participants with diagnosed ACL ruptures and 378 controls (235 SA and 143 PL) were recruited.

View Article and Find Full Text PDF

Background: Anterior cruciate ligament ruptures, especially to young female athletes, are a cause of major concern in the sports medicine fraternity. The major structural constituents of ligaments are collagens, specifically types I and V. Recently, the gene that encodes for the alpha1 chain of type I collagen (COL1A1) has been shown to be associated with an increased risk of cruciate ligament ruptures.

View Article and Find Full Text PDF

Background: Anterior cruciate ligament (ACL) ruptures are among the most severe musculoskeletal soft tissue injuries. However, the exact mechanisms which cause these acute injuries are unknown. Recently, sequence variants within two genes, namely COL1A1 and COL5A1, which code for the α1 chains of types I and V collagen respectively, were shown to be associated with ACL ruptures.

View Article and Find Full Text PDF