Publications by authors named "Dion Nicol"

Leaf phosphorus (P) comprises four major fractions: inorganic phosphate (P ), nucleic acids, phospholipids, P-containing metabolites and a residual fraction. In this review paper, we investigated whether allocation of P fractions varies among groups of terrestrial vascular plants, and is indicative of a species' strategy to use P efficiently. We found that as leaf total P concentration increases, the P fraction increases the most, without a plateau, while other fractions plateau.

View Article and Find Full Text PDF

A better understanding of the genetics of salinity tolerance in chickpea would enable breeding of salt tolerant varieties, offering potential to expand chickpea production to marginal, salinity-affected areas. A Recombinant Inbred Line population was developed using accelerated-Single Seed Descent of progeny from a cross between two chickpea varieties, Rupali (salt-sensitive) and Genesis836 (salt-tolerant). The population was screened for salinity tolerance using high-throughput image-based phenotyping in the glasshouse, in hydroponics, and across 2 years of field trials at Merredin, Western Australia.

View Article and Find Full Text PDF

Crops with improved uptake of fertilizer phosphorus (P) would reduce P losses and confer environmental benefits. We examined how P-sufficient 6-week-old soil-grown Trifolium subterraneum plants, and 2-week-old seedlings in solution culture, accumulated P in roots after inorganic P (Pi) addition. In contrast to our expectation that vacuoles would accumulate excess P, after 7 days, X-ray microanalysis showed that vacuolar [P] remained low (<12 mmol kg ).

View Article and Find Full Text PDF

Study of plants with unusual phosphorus (P) physiology may assist development of more P-efficient crops. Ptilotus polystachyus grows well at high P supply, when shoot P concentrations ([P]) may exceed 40 mg P g(-1) dry matter (DM). We explored the P physiology of P.

View Article and Find Full Text PDF