Publications by authors named "Diogo R da Costa"

This study focuses on the analysis of a unique composition between two well-established models, known as the Logistic-Gauss map. The investigation cohesively transitions to an exploration of parameter space, essential for unraveling the complexity of dissipative mappings and understanding the intricate relationships between periodic structures and chaotic regions. By manipulating control parameters, our approach reveals intriguing patterns, with findings enriched by extreme orbits, trajectories that connect local maximum and minimum values of one-dimensional maps.

View Article and Find Full Text PDF

We investigate some statistical properties of escaping particles in a billiard system whose boundary is described by two control parameters with a hole on its boundary. Initially, we analyze the survival probability for different hole positions and sizes. We notice that the survival probability follows an exponential decay with a characteristic power-law tail when the hole is positioned partially or entirely over large stability islands in phase space.

View Article and Find Full Text PDF

In the parameter spaces of nonlinear dynamical systems, we investigate the boundaries between periodicity and chaos and unveil the existence of fractal sets characterized by a singular fractal dimension that deviates greatly from the fractal sets in their vicinity. This extreme fractal dimension stands out from the typical value previously considered universal for these parameter boundaries. We show that such singular fractal sets dwell along parameter curves, called extreme curves, that intersect periodicity cascades at their centers of stability across all scales of parameter spaces.

View Article and Find Full Text PDF

We study the dynamics of classical particles confined in a time-dependent potential well. The dynamics of each particle is described by a two-dimensional nonlinear discrete mapping for the variables energy en and phase ϕn of the periodic moving well. We obtain the phase space and show that it contains periodic islands, chaotic sea, and invariant spanning curves.

View Article and Find Full Text PDF

The parameter plane investigation for a family of two-dimensional, nonlinear, and area contracting map is made. Several dynamical features in the system such as tangent, period-doubling, pitchfork, and cusp bifurcations were found and discussed together with cascades of period-adding, period-doubling, and the Feigeinbaum scenario. The presence of spring and saddle-area structures allow us to conclude that cubic homoclinic tangencies are present in the system.

View Article and Find Full Text PDF

The dynamics of a classical point particle confined to an asymmetric time-dependent potential well is investigated under the framework of scaling. The potential corresponds to a reduced version of a particle moving along an infinitely periodic sequence of synchronously oscillating potential barriers. The dynamics of the model is described by a two-dimensional nonlinear and area preserving map in energy and phase variables.

View Article and Find Full Text PDF

The dynamics of a monochromatic light beam is studied inside the oval billiard with an inner scatter circle, which can be interpreted as a cross section of a long optical fiber. The outer oval boundary acts as a perfect reflector for the light beam while the scatter circle encloses a medium with changeable refraction index. The light beam refracts when it enters inside this circle and some drastic changes in the phase space are observed.

View Article and Find Full Text PDF

Some dynamical properties for an oval billiard with a scatterer in its interior are studied. The dynamics consists of a classical particle colliding between an inner circle and an external boundary given by an oval, elliptical, or circle shapes, exploring for the first time some natural generalizations. The billiard is indeed a generalization of the annular billiard, which is of strong interest for understanding marginally unstable periodic orbits and their role in the boundary between regular and chaotic regions in both classical and quantum (including experimental) systems.

View Article and Find Full Text PDF

We consider a family of two-dimensional nonlinear area-preserving mappings that generalize the Chirikov standard map and model a variety of periodically forced systems. The action variable diffuses in increments whose phase is controlled by a negative power of the action and hence effectively uncorrelated for small actions, leading to a chaotic sea in phase space. For larger values of the action the phase space is mixed and contains a family of elliptic islands centered on periodic orbits and invariant Kolmogorov-Arnold-Moser (KAM) curves.

View Article and Find Full Text PDF

We investigate the escape of an ensemble of noninteracting particles inside an infinite potential box that contains a time-dependent potential well. The dynamics of each particle is described by a two-dimensional nonlinear area-preserving mapping for the variables energy and time, leading to a mixed phase space. The chaotic sea in the phase space surrounds periodic islands and is limited by a set of invariant spanning curves.

View Article and Find Full Text PDF