As CMOS technologies face challenges in dimensional and voltage scaling, the demand for novel logic devices has never been greater, with spin-based devices offering scaling potential, at the cost of significantly high switching energies. Alternatively, magnetoelectric materials are predicted to enable low-power magnetization control, a solution with limited device-level results. Here, we demonstrate voltage-based magnetization switching and reading in nanodevices at room temperature, enabled by exchange coupling between multiferroic BiFeO and ferromagnetic CoFe, for writing, and spin-to-charge current conversion between CoFe and Pt, for reading.
View Article and Find Full Text PDFChiral materials are an ideal playground for exploring the relation between symmetry, relativistic effects and electronic transport. For instance, chiral organic molecules have been intensively studied to electrically generate spin-polarized currents in the last decade, but their poor electronic conductivity limits their potential for applications. Conversely, chiral inorganic materials such as tellurium have excellent electrical conductivity, but their potential for enabling the electrical control of spin polarization in devices remains unclear.
View Article and Find Full Text PDFOxide interfaces exhibit a broad range of physical effects stemming from broken inversion symmetry. In particular, they can display non-reciprocal phenomena when time reversal symmetry is also broken, e.g.
View Article and Find Full Text PDFAfter 50 years of development, the technology of today's electronics is approaching its physical limits, with feature sizes smaller than 10 nanometres. It is also becoming clear that the ever-increasing power consumption of information and communication systems needs to be contained. These two factors require the introduction of non-traditional materials and state variables.
View Article and Find Full Text PDFSpintronics entails the generation, transport, manipulation and detection of spin currents, usually in hybrid architectures comprising interfaces whose impact on performance is detrimental. In addition, how spins are generated and detected is generally material specific and determined by the electronic structure. Here, we demonstrate spin current generation, transport and electrical detection, all within a single non-magnetic material system: a SrTiO two-dimensional electron gas (2DEG) with Rashba spin-orbit coupling.
View Article and Find Full Text PDFWhile spintronics has traditionally relied on ferromagnetic metals as spin generators and detectors, spin-orbitronics exploits the efficient spin-charge interconversion enabled by spin-orbit coupling in non-magnetic systems. Although the Rashba picture of split parabolic bands is often used to interpret such experiments, it fails to explain the largest conversion effects and their relationship with the electronic structure. Here, we demonstrate a very large spin-to-charge conversion effect in an interface-engineered, high-carrier-density SrTiO two-dimensional electron gas and map its gate dependence on the band structure.
View Article and Find Full Text PDFThe quasi 2D electron system (q2DES) that forms at the interface between LaAlO3 (LAO) and SrTiO3 (STO) has attracted much attention from the oxide electronics community. One of its hallmark features is the existence of a critical LAO thickness of 4 unit-cells (uc) for interfacial conductivity to emerge. Although electrostatic mechanisms have been proposed in the past to describe the existence of this critical thickness, the importance of chemical defects has been recently accentuated.
View Article and Find Full Text PDFThe quasi 2D electron system (q2DES) that forms at the interface between LaAlO and SrTiO has attracted much attention from the oxide electronics community. One of its hallmark features is the existence of a critical LaAlO thickness of 4 unit-cells (uc) for interfacial conductivity to emerge. In this paper, the chemical, electronic, and transport properties of LaAlO /SrTiO samples capped with different metals grown in a system combining pulsed laser deposition, sputtering, and in situ X-ray photoemission spectroscopy are investigated.
View Article and Find Full Text PDF