In addition to the action potentials generated by the ongoing activation of single dorsal horn neurons in the anesthetized cat, we often recorded small negative field potentials with a fast-rising phase and a slow decay (dIFPs). These potentials could be separated in different classes, each with a specific and rather constant shape and amplitude. They were largest in spinal laminae III-V and gradually faded at deeper locations, without showing the polarity reversal displayed at these depths by the focal potentials produced by stimulation of muscle and cutaneous afferents.
View Article and Find Full Text PDFIn the anesthetized cat the correlation between the ongoing cord dorsum potentials (CDPs) recorded from different lumbar spinal segments has a non-random structure, suggesting relatively stable patterns of functional connectivity between the dorsal horn neuronal ensembles involved in the generation of these potentials. During the nociception induced by the intradermic injection of capsaicin, the patterns of segmental correlation between the spontaneous CDPs acquire other non-random configurations that are temporarily reversed to their pre-capsaicin state by the systemic injection of lidocaine, a procedure known to decrease the manifestation of neuropathic pain in both animals and humans. We have now extended these studies and utilized machine learning for the automatic extraction and selection of particular classes of CDPs according to their shapes and amplitudes.
View Article and Find Full Text PDFIn a previous study we developed a Machine Learning procedure for the automatic identification and classification of spontaneous cord dorsum potentials (). This study further supported the proposal that in the anesthetized cat, the spontaneous recorded from different lumbar spinal segments are generated by a distributed network of dorsal horn neurons with structured (non-random) patterns of functional connectivity and that these configurations can be changed to other non-random and stable configurations after the noceptive stimulation produced by the intradermic injection of capsaicin in the anesthetized cat. Here we present a study showing that the sequence of identified forms of the spontaneous follows a Markov chain of at least order one.
View Article and Find Full Text PDFPrevious studies aimed to disclose the functional organization of the neuronal networks involved in the generation of the spontaneous cord dorsum potentials (CDPs) generated in the lumbosacral spinal segments used predetermined templates to select specific classes of spontaneous CDPs. Since this procedure was time consuming and required continuous supervision, it was limited to the analysis of two specific types of CDPs (negative CDPs and negative positive CDPs), thus excluding potentials that may reflect activation of other neuronal networks of presumed functional relevance. We now present a novel procedure based in machine learning that allows the efficient and unbiased selection of a variety of spontaneous CDPs with different shapes and amplitudes.
View Article and Find Full Text PDF