Glaucoma, the leading cause of irreversible blindness worldwide, is a neurodegenerative disease characterized by chronic axonal damages and progressive loss of retinal ganglion cells, with increased intraocular pressure (IOP) as the primary risk factor. While current treatments focus solely on reducing IOP, understanding glaucoma through experimental models is essential for developing new therapeutic strategies and biomarkers for early diagnosis. Our research group developed an ocular hypertension rat model based on limbal plexus cautery, which provides significant glaucomatous neurodegeneration up to four weeks after injury.
View Article and Find Full Text PDFThe retina is the sensory tissue responsible for the first stages of visual processing, with a conserved anatomy and functional architecture among vertebrates. To date, retinal eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, glaucoma, and others, affect nearly 170 million people worldwide, resulting in vision loss and blindness. To tackle retinal disorders, the developing retina has been explored as a versatile model to study intercellular signaling, as it presents a broad neurochemical repertoire that has been approached in the last decades in terms of signaling and diseases.
View Article and Find Full Text PDF