The effect of clustering induced by albumin coating on the magnetic behaviour of ultra-small MnFeO nanoparticles has been systematically investigated and compared with that in pure Mn ferrite nanoparticle dense assembly, using a mesoscopic scale approach and numerical simulations reproducing the experimental findings well. Our results provide evidence that in the coated system, the interplay between intra-particle and intra-cluster exchange interactions strongly affects the exchange bias and coercive field values, with the dipolar interactions playing a minor role. Instead, the albumin coating does not affect the thermal stability of the observed superspin glass phase, the freezing temperature being similar in the coated and uncoated systems.
View Article and Find Full Text PDFDespite modern preparation techniques offer the opportunity to tailor the composition, size, and shape of magnetic nanoparticles, understanding and hence controlling the magnetic properties of such entities remains a challenging task, due to the complex interplay between the volume-related properties and the phenomena occurring at the particle's surface. The present work investigates spinel iron oxide nanoparticles as a model system to quantitatively analyze the crossover between the bulk and the surface-dominated magnetic regimes. The magnetic properties of ensembles of nanoparticles with an average size in the range of 5-13 nm are compared.
View Article and Find Full Text PDFToday, public health is one of the most important challenges in society. Cancer is the leading cause of death, so early diagnosis and localized treatments that minimize side effects are a priority. Magnetic nanoparticles have shown great potential as magnetic resonance imaging contrast agents, detection tags for in vitro biosensing, and mediators of heating in magnetic hyperthermia.
View Article and Find Full Text PDFThe design of novel multifunctional materials based on nanoparticles requires tuning of their magnetic properties, which are strongly dependent on the surface structure. The organic coating represents a unique tool to significantly modify the surface structure trough the bonds between the ligands of the organic molecule and the surface metal atoms. This work presents a critical overview of the effects of the organic coating on the magnetic properties of nanoparticles trough a selection of papers focused on different approaches to control the surface structure and the morphology of nanoparticles' assemblies.
View Article and Find Full Text PDFIn this work it is shown a precise way to optimize the heat generation in high viscosity magnetic colloids, by adjusting the Néel relaxation time in core/shell bimagnetic nanoparticles, for magnetic fluid hyperthermia (MFH) applications. To pursue this goal, FeO/Zn Co FeO core/shell nanoparticles were synthesized with 8.5 nm mean core diameter, encapsulated in a shell of ∼1.
View Article and Find Full Text PDFIn this work it is shown a precise way to optimize the heat generation in high viscosity magnetic colloids, by adjusting the Néel relaxation time in core/shell bimagnetic nanoparticles, for Magnetic Fluid Hyperthermia applications. To pursue this goal, Fe3O4/ZnxCo1-xFe2O4 core/shell nanoparticles were synthesized with 8.5 nm mean core diameter, encapsulated in a shell of ~1.
View Article and Find Full Text PDFThe effect of the annealing temperature on the magnetic properties of cobalt ferrite nanoparticles embedded in an amorphous silica matrix (CoFeO/SiO), synthesized by a sol-gel auto-combustion method, was investigated by magnetization and AC susceptibility measurements. For samples with 15% w/w nanoparticle concentration, the particle size increases from ~2.5 to ~7 nm, increasing from 700 to 900 °C.
View Article and Find Full Text PDFOver the last two decades, iron oxide based nanoparticles ferrofluids have attracted significant attention for a wide range of applications. For the successful use of these materials in biotechnology and energy, surface coating and specific functionalization is critical to achieve high dispersibility and colloidal stability of the nanoparticles in the ferrofluids. In view of this, the magnetic behavior of clusters of ultra-small MnFeO nanoparticles covered by bovine serum albumin, which is known as a highly biocompatible and environmentally friendly surfactant, is investigated by magnetization measurements, and numerical simulations at an atomic and mesoscopic scale.
View Article and Find Full Text PDFThe control of the size of bimagnetic nanoparticles represents an important step toward the study of fundamental properties and the design of new nanostructured magnetic materials. We report the synthesis and the structural and magnetic characterization of bimagnetic CoO/CoFe2O4 core/shell nanoparticles. The material was fabricated by a seed-mediated growth high-temperature decomposition method with sizes in the range of 5-11 nm.
View Article and Find Full Text PDF