Microparticle-templated droplets or dropicles have recently gained interest in the fields of diagnostic immunoassays, single-cell analysis, and digital molecular biology. Amphiphilic particles have been shown to spontaneously capture aqueous droplets within their cavities upon mixing with an immiscible oil phase, where each particle templates a single droplet. Here, an amphiphilic microparticle with four discrete hydrophilic patches embedded at the inner corners of a square-shaped hydrophobic outer ring of the particle (4C particle) is fabricated.
View Article and Find Full Text PDFSuccessful integration of point-of-care testing (POCT) into clinical settings requires improved assay sensitivity and precision to match laboratory standards. Here, we show how innovations in amplified biosensing, imaging, and data processing, coupled with deep learning, can help improve POCT. To demonstrate the performance of our approach, we present a rapid and cost-effective paper-based high-sensitivity vertical flow assay (hs-VFA) for quantitative measurement of cardiac troponin I (cTnI), a biomarker widely used for measuring acute cardiac damage and assessing cardiovascular risk.
View Article and Find Full Text PDFAntibody discovery technologies, essential for research and therapeutic applications, have evolved significantly since the development of hybridoma technology. Various in vitro (display) and in vivo (animal immunization and B cell-sequencing) workflows have led to the discovery of antibodies against diverse antigens. Despite this success, standard display and B-cell sequencing-based technologies are limited to targets that can be produced in a soluble form.
View Article and Find Full Text PDFPoint-of-care serological and direct antigen testing offers actionable insights for diagnosing challenging illnesses, empowering distributed health systems. Here, we report a POC-compatible serologic test for Lyme disease (LD), leveraging synthetic peptides specific to LD antibodies and a paper-based platform for rapid, and cost-effective diagnosis. Antigenic epitopes conserved across Borrelia burgdorferi genospecies, targeted by IgG and IgM antibodies, are selected to develop a multiplexed panel for detection of LD antibodies from patient sera.
View Article and Find Full Text PDFThe rapid spread of SARS-CoV-2 caused the COVID-19 pandemic and accelerated vaccine development to prevent the spread of the virus and control the disease. Given the sustained high infectivity and evolution of SARS-CoV-2, there is an ongoing interest in developing COVID-19 serology tests to monitor population-level immunity. To address this critical need, we designed a paper-based multiplexed vertical flow assay (xVFA) using five structural proteins of SARS-CoV-2, detecting IgG and IgM antibodies to monitor changes in COVID-19 immunity levels.
View Article and Find Full Text PDFmRNA therapy is the intracellular delivery of messenger RNA (mRNA) to produce desired therapeutic proteins. Developing strategies for local mRNA delivery is still required where direct intra-articular injections are inappropriate for targeting a specific tissue. The mRNA delivery efficiency depends on protecting nucleic acids against nuclease-mediated degradation and safe site-specific intracellular delivery.
View Article and Find Full Text PDFThe ability to selectively bind to antigenic peptides and secrete effector molecules can define rare and low-affinity populations of cells with therapeutic potential in emerging T cell receptor (TCR) immunotherapies. We leverage cavity-containing hydrogel microparticles, called nanovials, each coated with peptide-major histocompatibility complex (pMHC) monomers to isolate antigen-reactive T cells. T cells are captured and activated by pMHCs inducing the secretion of effector molecules including IFN-γ and granzyme B that are accumulated on nanovials, allowing sorting based on both binding and function.
View Article and Find Full Text PDFObjectives: To assess the in vitro IntelliSep test, a microfluidic assay that quantifies the state of immune activation by evaluating the biophysical properties of leukocytes, as a rapid diagnostic for sepsis.
Design: Prospective cohort study.
Setting: Five emergency departments (EDs) in Louisiana, Missouri, North Carolina, and Washington.
The separation of specific cell populations is instrumental in gaining insights into cellular processes, elucidating disease mechanisms, and advancing applications in tissue engineering, regenerative medicine, diagnostics, and cell therapies. Microfluidic methods for cell separation have propelled the field forward, benefitting from miniaturization, advanced fabrication technologies, a profound understanding of fluid dynamics governing particle separation mechanisms, and a surge in interdisciplinary investigations focused on diverse applications. Cell separation methodologies can be categorized according to their underlying separation mechanisms.
View Article and Find Full Text PDFCells secrete numerous bioactive molecules that are essential for the function of healthy organisms. However, scalable methods are needed to link individual cell secretions to their transcriptional state over time. Here, by developing and using secretion-encoded single-cell sequencing (SEC-seq), which exploits hydrogel particles with subnanolitre cavities (nanovials) to capture individual cells and their secretions, we simultaneously measured the secretion of vascular endothelial growth factor A (VEGF-A) and the transcriptome for thousands of individual mesenchymal stromal cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2023
Liquid-liquid phase separation is key to understanding aqueous two-phase systems (ATPS) arising throughout cell biology, medical science, and the pharmaceutical industry. Controlling the detailed morphology of phase-separating compound droplets leads to new technologies for efficient single-cell analysis, targeted drug delivery, and effective cell scaffolds for wound healing. We present a computational model of liquid-liquid phase separation relevant to recent laboratory experiments with gelatin-polyethylene glycol mixtures.
View Article and Find Full Text PDFHydrogels are widely used for tissue engineering applications to support cellular growth, yet the tightly woven structure often restricts cell infiltration and expansion. Consequently, granular hydrogels with microporous architectures have emerged as a new class of biomaterial. Particularly, the development of microporous annealed particle (MAP) hydrogel scaffolds has shown improved stability and integration with host tissue.
View Article and Find Full Text PDFCompartmentalization, leveraging microfluidics, enables highly sensitive assays, but the requirement for significant infrastructure for their design, build, and operation limits access. Multimaterial particle-based technologies thermodynamically stabilize monodisperse droplets as individual reaction compartments with simple liquid handling steps, precluding the need for expensive microfluidic equipment. Here, we further improve the accessibility of this lab on a particle technology to resource-limited settings by combining this assay system with a portable multimodal reader, thus enabling nanoliter droplet assays in an accessible platform.
View Article and Find Full Text PDFNew vaccine platforms that activate humoral immunity and generate neutralizing antibodies are required to combat emerging pathogens, including influenza virus. A slurry of antigen-loaded hydrogel microparticles that anneal to form a porous scaffold with high surface area for antigen uptake by infiltrating immune cells as the biomaterial degrades is demonstrated to enhance humoral immunity. Antigen-loaded-microgels elicited a robust cellular humoral immune response, with increased CD4 T follicular helper (Tfh) cells and prolonged germinal center (GC) B cells comparable to the commonly used adjuvant, aluminum hydroxide (Alum).
View Article and Find Full Text PDFWhile hyaluronic acid (HA)-based hydrogels have been used clinically for decades, the mechanisms by which HA exerts molecular weight-dependent bioactivity and how chemical modification and crosslinking may affect molecular weight-dependent bioactivity remain poorly understood. This knowledge gap presents a significant barrier to designing HA hydrogels with predictable bioactivities. As HA has been widely reported to have molecular weight-dependent effects on endothelial cells (ECs), we investigated how the molecular weight of HA in either soluble or crosslinked forms affects angiogenesis and interrogated CD44 clustering on the surface of endothelial cells as a candidate mechanism for these affects.
View Article and Find Full Text PDFThe study of flow and particle dynamics in microfluidic cross-slot channels is of high relevance for lab-on-a-chip applications. In this work, we investigate the dynamics of a rigid spherical particle in a cross-slot junction for a channel height-to-width ratio of 0.6 and at a Reynolds number of 120 for which a steady vortex exists in the junction area.
View Article and Find Full Text PDFMicrofluidics enables the creation of monodisperse, micron-scale aqueous droplets, or other compartments. These droplets serve as picolitre-volume reaction chambers which can be utilized for various chemical assays or reactions. Here we describe the use of a microfluidic droplet generator to encapsulate single cells within hollow hydrogel microparticles called PicoShells.
View Article and Find Full Text PDFPoint-of-care (POC) serological testing provides actionable information for several difficult to diagnose illnesses, empowering distributed health systems. Accessible and adaptable diagnostic platforms that can assay the repertoire of antibodies formed against pathogens are essential to drive early detection and improve patient outcomes. Here, we report a POC serologic test for Lyme disease (LD), leveraging synthetic peptides tuned to be highly specific to the LD antibody repertoire across patients and compatible with a paper-based platform for rapid, reliable, and cost-effective diagnosis.
View Article and Find Full Text PDFCritical challenges remain in clinical translation of extracellular vesicle (EV)-based therapeutics due to the absence of methods to enrich cells with high EV secretion. Current cell sorting methods are limited to surface markers that are uncorrelated to EV secretion or therapeutic potential. We developed a nanovial technology for enrichment of millions of single cells based on EV secretion.
View Article and Find Full Text PDFThe secreted products of cells drive many functions in vivo; however, methods to link this functional information to surface markers and transcriptomes have been lacking. By accumulating secretions close to secreting cells held within cavity-containing hydrogel nanovials, we demonstrate workflows to analyze the amount of IgG secreted from single human B cells and link this information to surface markers and transcriptomes from the same cells. Measurements using flow cytometry and imaging flow cytometry corroborate the association between IgG secretion and CD38/CD138.
View Article and Find Full Text PDF