Publications by authors named "Dino Bindi"

How, when and where large earthquakes are generated remain fundamental unsolved scientific questions. Intercepting when a fault system starts deviating from its steady behavior by monitoring the spatio-temporal evolution and dynamic source properties of micro-to-small earthquakes can have high potential as tool for identifying the preparatory phase of large earthquakes. We analyze the seismic activity that preceded the Mw 6.

View Article and Find Full Text PDF

Damaging earthquakes result from the evolution of stress in the brittle upper-crust, but the understanding of the mechanics of faulting cannot be achieved by only studying the large ones, which are rare. Considering a fault as a complex system, microearthquakes allow to set a benchmark in the system evolution. Here, we investigate the possibility to detect when a fault system starts deviating from a predefined benchmark behavior by monitoring the temporal and spatial variability of different micro-and-small magnitude earthquakes properties.

View Article and Find Full Text PDF

Shear-waves are the most energetic body-waves radiated from an earthquake, and are responsible for the destruction of engineered structures. In both short-term emergency response and long-term risk forecasting of disaster-resilient built environment, it is critical to predict spatially accurate distribution of shear-wave amplitudes. Although decades' old theory proposes a deterministic, highly anisotropic, four-lobed shear-wave radiation pattern, from lack of convincing evidence, most empirical ground-shaking prediction models settled for an oversimplified stochastic radiation pattern that is isotropic on average.

View Article and Find Full Text PDF

We present here a direct least-squares estimation (DLSE) method for the determination of renal kinetic parameters from sequences of very fast acquisitions performed with a three-headed single photon emission computed tomography (SPECT) system. A simple linear model for the behavior of the radiopharmaceutical, as well as a spatial model for its spatial distribution are defined. The model enables one to estimate the kinetic parameters directly from the projections, once the plasma concentration function is known.

View Article and Find Full Text PDF