Publications by authors named "Dinner A"

Identifying informative low-dimensional features that characterize dynamics in molecular simulations remains a challenge, often requiring extensive manual tuning and system-specific knowledge. Here, we introduce geom2vec, in which pretrained graph neural networks (GNNs) are used as universal geometric featurizers. By pretraining equivariant GNNs on a large dataset of molecular conformations with a self-supervised denoising objective, we obtain transferable structural representations that are useful for learning conformational dynamics without further fine-tuning.

View Article and Find Full Text PDF

The oscillator of the cyanobacterial circadian clock relies on the ability of the KaiB protein to switch reversibly between a stable ground-state fold (gsKaiB) and an unstable fold-switched fold (fsKaiB). Rare fold-switching events by KaiB provide a critical delay in the negative feedback loop of this posttranslational oscillator. In this study, we experimentally and computationally investigate the temperature dependence of fold switching and its mechanism.

View Article and Find Full Text PDF

The protein hormone insulin forms a homodimer that must dissociate to bind to its receptor. Understanding the kinetics and mechanism of dissociation is essential for the rational design of therapeutic analogs. In addition to its physiological importance, this dissociation process serves as a paradigm for coupled (un)folding and (un)binding.

View Article and Find Full Text PDF

is a unicellular ciliate capable of contracting to a quarter of its body length in less than five milliseconds. When measured as fractional shortening, this is an order of magnitude faster than motion powered by actomyosin. Myonemes, which are protein networks found near the cortex of many protists, are believed to power contraction.

View Article and Find Full Text PDF

The protein hormone insulin forms a homodimer that must dissociate to bind to its receptor. Understanding the kinetics and mechanism of dissociation is essential for rational design of therapeutic analogs. In addition to its physiological importance, this dissociation process serves as a paradigm for coupled (un)folding and (un)binding.

View Article and Find Full Text PDF

Multiple SARS-CoV-2 variants have arisen during the first years of the pandemic, often bearing many new mutations. Several explanations have been offered for the surprisingly sudden emergence of multiple mutations that enhance viral fitness, including cryptic transmission, spillover from animal reservoirs, epistasis between mutations, and chronic infections. Here, we simulated pathogen evolution combining within-host replication and between-host transmission.

View Article and Find Full Text PDF

Many biological decision-making processes can be viewed as performing a classification task over a set of inputs, using various chemical and physical processes as "biological hardware." In this context, it is important to understand the inherent limitations on the computational expressivity of classification functions instantiated in biophysical media. Here, we model biochemical networks as Markov jump processes and train them to perform classification tasks, allowing us to investigate their computational expressivity.

View Article and Find Full Text PDF

An issue for molecular dynamics simulations is that events of interest often involve timescales that are much longer than the simulation time step, which is set by the fastest timescales of the model. Because of this timescale separation, direct simulation of many events is prohibitively computationally costly. This issue can be overcome by aggregating information from many relatively short simulations that sample segments of trajectories involving events of interest.

View Article and Find Full Text PDF

The oscillator of the cyanobacterial circadian clock relies on the ability of the KaiB protein to switch reversibly between a stable ground-state fold (gsKaiB) and an unstable fold-switched fold (fsKaiB). Rare fold-switching events by KaiB provide a critical delay in the negative feedback loop of this post-translational oscillator. In this study, we experimentally and computationally investigate the temperature dependence of fold switching and its mechanism.

View Article and Find Full Text PDF

Many chemical reactions and molecular processes occur on time scales that are significantly longer than those accessible by direct simulations. One successful approach to estimating dynamical statistics for such processes is to use many short time series of observations of the system to construct a Markov state model, which approximates the dynamics of the system as memoryless transitions between a set of discrete states. The dynamical Galerkin approximation (DGA) is a closely related framework for estimating dynamical statistics, such as committors and mean first passage times, by approximating solutions to their equations with a projection onto a basis.

View Article and Find Full Text PDF

In active materials, uncoordinated internal stresses lead to emergent long-range flows. An understanding of how the behavior of active materials depends on mesoscopic (hydrodynamic) parameters is developing, but there remains a gap in knowledge concerning how hydrodynamic parameters depend on the properties of microscopic elements. In this work, we combine experiments and multiscale modeling to relate the structure and dynamics of active nematics composed of biopolymer filaments and molecular motors to their microscopic properties, in particular motor processivity, speed, and valency.

View Article and Find Full Text PDF

The Ciona intestinalis voltage-sensing phosphatase (Ci-VSP) is a membrane protein containing a voltage-sensing domain (VSD) that is homologous to VSDs from voltage-gated ion channels responsible for cellular excitability. Previously published crystal structures of Ci-VSD in putative resting and active conformations suggested a helical-screw voltage sensing mechanism in which the S4 helix translocates and rotates to enable exchange of salt-bridge partners, but the microscopic details of the transition between the resting and active conformations remained unknown. Here, by combining extensive molecular dynamics simulations with a recently developed computational framework based on dynamical operators, we elucidate the microscopic mechanism of the resting-active transition at physiological membrane potential.

View Article and Find Full Text PDF

Understanding how protein sequences confer function remains a defining challenge in molecular biology. Two approaches have yielded enormous insight yet are often pursued separately: structure-based, where sequence-encoded structures mediate function, and disorder-based, where sequences dictate physicochemical and dynamical properties which determine function in the absence of stable structure. Here we study highly charged protein regions (>40% charged residues), which are routinely presumed to be disordered.

View Article and Find Full Text PDF

In active materials, uncoordinated internal stresses lead to emergent long-range flows. An understanding of how the behavior of active materials depends on mesoscopic (hydrodynamic) parameters is developing, but there remains a gap in knowledge concerning how hydrodynamic parameters depend on the properties of microscopic elements. In this work, we combine experiments and multiscale modeling to relate the structure and dynamics of active nematics composed of biopolymer filaments and molecular motors to their microscopic properties, in particular motor processivity, speed, and valency.

View Article and Find Full Text PDF

Understanding dynamics in complex systems is challenging because there are many degrees of freedom, and those that are most important for describing events of interest are often not obvious. The leading eigenfunctions of the transition operator are useful for visualization, and they can provide an efficient basis for computing statistics, such as the likelihood and average time of events (predictions). Here, we develop inexact iterative linear algebra methods for computing these eigenfunctions (spectral estimation) and making predictions from a dataset of short trajectories sampled at finite intervals.

View Article and Find Full Text PDF

Estimating the likelihood, timing, and nature of events is a major goal of modeling stochastic dynamical systems. When the event is rare in comparison with the timescales of simulation and/or measurement needed to resolve the elemental dynamics, accurate prediction from direct observations becomes challenging. In such cases a more effective approach is to cast statistics of interest as solutions to Feynman-Kac equations (partial differential equations).

View Article and Find Full Text PDF

In nature, several ciliated protists possess the remarkable ability to execute ultrafast motions using protein assemblies called myonemes, which contract in response to Ca ions. Existing theories, such as actomyosin contractility and macroscopic biomechanical latches, do not adequately describe these systems, necessitating development of models to understand their mechanisms. In this study, we image and quantitatively analyze the contractile kinematics observed in two ciliated protists ( sp.

View Article and Find Full Text PDF

Many sampling strategies commonly used in molecular dynamics, such as umbrella sampling and alchemical free energy methods, involve sampling from multiple states. The Multistate Bennett Acceptance Ratio (MBAR) formalism is a widely used way of recombining the resulting data. However, the error of the MBAR estimator is not well-understood: previous error analyses of MBAR assumed independent samples.

View Article and Find Full Text PDF

Understanding how protein sequences confer function remains a defining challenge in molecular biology. Two approaches have yielded enormous insight yet are often pursued separately: structure-based, where sequence-encoded structures mediate function, and disorder-based, where sequences dictate physicochemical and dynamical properties which determine function in the absence of stable structure. Here we study highly charged protein regions (>40% charged residues), which are routinely presumed to be disordered.

View Article and Find Full Text PDF

We consider an immersed elastic body that is actively driven through a structured fluid by a motor or an external force. The behavior of such a system generally cannot be solved analytically, necessitating the use of numerical methods. However, current numerical methods omit important details of the microscopic structure and dynamics of the fluid, which can modulate the magnitudes and directions of viscoelastic restoring forces.

View Article and Find Full Text PDF

Circadian clocks may mediate lifespan extension by caloric or dietary restriction (DR). We find that the core clock transcription factor is crucial for a robust longevity and fecundity response to DR in . To identify clock-controlled mediators, we performed RNA-sequencing from abdominal fat bodies across the 24 h day after just 5 days under control or DR diets.

View Article and Find Full Text PDF

Biological materials, such as the actin cytoskeleton, exhibit remarkable structural adaptability to various external stimuli by consuming different amounts of energy. In this Letter, we use methods from large deviation theory to identify a thermodynamic control principle for structural transitions in a model cytoskeletal network. Specifically, we demonstrate that biasing the dynamics with respect to the work done by nonequilibrium components effectively renormalizes the interaction strength between such components, which can eventually result in a morphological transition.

View Article and Find Full Text PDF

Transition path theory provides a statistical description of the dynamics of a reaction in terms of local spatial quantities. In its original formulation, it is limited to reactions that consist of trajectories flowing from a reactant set A to a product set B. We extend the basic concepts and principles of transition path theory to reactions in which trajectories exhibit a specified sequence of events and illustrate the utility of this generalization on examples.

View Article and Find Full Text PDF

The cyanobacterial clock presents a unique opportunity to understand the biochemical basis of circadian rhythms. The core oscillator, composed of the KaiA, KaiB, and KaiC proteins, has been extensively studied, but a complete picture of its connection to the physiology of the cell is lacking. To identify previously unknown components of the clock, we used KaiB locked in its active fold as bait in an immunoprecipitation/mass spectrometry approach.

View Article and Find Full Text PDF

Transition path theory computes statistics from ensembles of reactive trajectories. A common strategy for sampling reactive trajectories is to control the branching and pruning of trajectories so as to enhance the sampling of low probability segments. However, it can be challenging to apply transition path theory to data from such methods because determining whether configurations and trajectory segments are part of reactive trajectories requires looking backward and forward in time.

View Article and Find Full Text PDF