It is well recognized that changes in the extracellular concentration of calcium ions influence the excitability of neurons, yet what mechanism(s) mediate these effects is still a matter of debate. Using patch-clamp recordings from rat hippocampal CA1 pyramidal neurons, we examined the contribution of G-proteins and intracellular calcium-dependent signaling mechanisms to changes in intrinsic excitability evoked by altering the extracellular calcium concentration from physiological (1.2 mM) to a commonly used experimental (2 mM) level.
View Article and Find Full Text PDFPurpose: To establish an ethical, reliable, and expandable retinal pigment epithelial (RPE) cell model with maintained RPE properties compatible with multifarious assays.
Methods: RPE cells from abattoir-obtained porcine eyes were cultured under various conditions. Morphology, RPE cell-specific protein markers (RPE-65, CRALBP), and the tight junction marker ZO-1 were analyzed by phase-contrast microscopy, immunocytochemistry, and western blot, and transepithelial electrical resistance (TEER) was determined to assess barrier function.