The developmental decision made by malaria parasites to become sexual underlies all malaria transmission. Here, we describe a rich atlas of short- and long-read single-cell transcriptomes of over 37,000 cells across intraerythrocytic asexual and sexual development. We used the atlas to explore transcriptional modules and exon usage along sexual development and expanded it to include malaria parasites collected from four Malian individuals naturally infected with multiple strains.
View Article and Find Full Text PDFUp-to-date knowledge of key epidemiological aspects of each species is necessary for making informed decisions on targeted interventions and control strategies to eliminate each of them. This study aims to describe the epidemiology of plasmodial species in Mali, where malaria is hyperendemic and seasonal. Data reports collected during high-transmission season over six consecutive years were analyzed to summarize malaria epidemiology.
View Article and Find Full Text PDFMalaria elimination may never succeed without the implementation of transmission-blocking strategies. The transmission of spp. parasites from the human host to the mosquito vector depends on circulating gametocytes in the peripheral blood of the vertebrate host.
View Article and Find Full Text PDFHost immunity has been suggested to clear drug-resistant parasites in malaria-endemic settings. However, the immunogenetic mechanisms involved in parasite clearance are poorly understood. Characterizing the host's immunity and genes involved in controlling the parasitic infection can inform the development of blood-stage malaria vaccines.
View Article and Find Full Text PDFThe discovery and development of transmission-blocking therapies challenge malaria elimination and necessitate standard and reproducible bioassays to measure the blocking properties of antimalarial drugs and candidate compounds. Most of the current bioassays evaluating the transmission-blocking activity of compounds rely on laboratory-adapted strains. Transmission-blocking data from clinical gametocyte isolates could help select novel transmission-blocking candidates for further development.
View Article and Find Full Text PDFStructural biology is an essential tool for understanding the molecular basis of diseases, which can guide the rational design of new drugs, vaccines, and the optimisation of existing medicines. However, most African countries do not conduct structural biology research due to limited resources, lack of trained persons, and an exodus of skilled scientists. The most urgent requirement is to build on the emerging centres in Africa - some well-established, others growing.
View Article and Find Full Text PDFStudying malaria transmission biology using scRNA-sequencing provides information on within-host strain diversity and transcriptional states. Here, we comment on our collaborative efforts at establishing single-cell capacities in sub-Saharan Africa and the challenges encountered in Mali’s endemic setting.
View Article and Find Full Text PDFremains one of the leading causes of child mortality, and nearly half of the world's population is at risk of contracting malaria. While pathogenesis results from replication of asexual forms in human red blood cells, it is the sexually differentiated forms, gametocytes, which are responsible for the spread of the disease. For transmission to succeed, both mature male and female gametocytes must be taken up by a female mosquito during its blood meal for subsequent differentiation into gametes and mating inside the mosquito gut.
View Article and Find Full Text PDFBackground: Most malaria-endemic countries use artemisinin-based combination therapy (ACT) as their first-line treatment. ACTs are known to be highly effective on asexual stages of the malaria parasite. Malaria transmission and the spread of resistant parasites depend on the infectivity of gametocytes.
View Article and Find Full Text PDFToxoplasma gondii is an intracellular parasite that causes disseminated infections in fetuses and immunocompromised individuals. Although gene regulation is important for parasite differentiation and pathogenesis, little is known about protein organization in the nucleus. Here we show that the fucose-binding Aleuria aurantia lectin (AAL) binds to numerous punctate structures in the nuclei of tachyzoites, bradyzoites, and sporozoites but not oocysts.
View Article and Find Full Text PDFArtemisinin-based combination therapies decrease Plasmodium gametocyte carriage. However, the role of artesunate in monotherapy in vivo, the mechanisms involved, and the utility of gametocyte carriage as a potential tool for the surveillance of antimalarial resistance are poorly understood. In 2010-2011, we conducted an open-label, prospective efficacy study of artesunate as monotherapy in children 1-10 years of age with uncomplicated falciparum malaria in Bougoula-Hameau, Mali.
View Article and Find Full Text PDFUnlike most cells, protozoa in the phylum Apicomplexa divide by a distinctive process in which multiple daughters are assembled within the mother (schizogony or endodyogeny), using scaffolding known as the inner membrane complex (IMC). The IMC underlies the plasma membrane during interphase, but new daughters develop in the cytoplasm, as cytoskeletal filaments associate with flattened membrane cisternae (alveolae), which elongate rapidly to encapsulate subcellular organelles. Newly assembled daughters acquire their plasma membrane as they emerge from the mother, leaving behind vestiges of the maternal cell.
View Article and Find Full Text PDFThe economic and clinical significance of apicomplexan parasites drives interest in their many evolutionary novelties. Distinctive intracellular organelles play key roles in parasite motility, invasion, metabolism, and replication, and understanding their relationship with the organelles of better-studied eukaryotic systems suggests potential targets for therapeutic intervention. Recent work has demonstrated divergent aspects of canonical eukaryotic components in the Apicomplexa, including Golgi bodies and mitochondria.
View Article and Find Full Text PDFThe protozoan parasite Toxoplasma gondii is globally distributed, with considerable local variation in prevalence based on behavioral and environmental factors. To assess prevalence and estimate risk in Mali, we conducted a survey of 760 serum samples previously collected for malaria studies. A modified agglutination test detected antibodies in ∼27% of the adult population, with no significant differences between men and women, or between urban and rural study sites.
View Article and Find Full Text PDFSulfadoxine-pyrimethamine (SP) treatment increases the rate of gametocyte carriage and selects SP resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS), raising concerns of increased malaria transmission and spread of drug resistance. In a setting in Mali where SP was highly efficacious, we measured the prevalence of DHFR and DHPS mutations in P. falciparum infections with microscopy-detected gametocytes following SP treatment, and used direct feeding to assess infectivity to Anopheles gambiae sensu lato.
View Article and Find Full Text PDFPlasmodium falciparum chloroquine resistance (CQR) transporter point mutation (PfCRT 76T) is known to be the key determinant of CQR. Molecular detection of PfCRT 76T in field samples may be used for the surveillance of CQR in malaria-endemic countries. The genotype-resistance index (GRI), which is obtained as the ratio of the prevalence of PfCRT 76T to the incidence of CQR in a clinical trial, was proposed as a simple and practical molecular-based addition to the tools currently available for monitoring CQR in the field.
View Article and Find Full Text PDFBackground: To update the National Malaria Control Programme of Mali on the efficacy of chloroquine, amodiaquine and sulphadoxine-pyrimethamine in the treatment of uncomplicated falciparum malaria.
Methods: During the malaria transmission seasons of 2002 and 2003, 455 children--between six and 59 months of age, with uncomplicated malaria in Kolle, Mali, were randomly assigned to one of three treatment arms. In vivo outcomes were assessed using WHO standard protocols.
We conducted a randomized single-blinded trial comparing the efficacy and safety of artesunate (AS) + amodiaquine (AQ, 3 days) versus AS (3 days) + sulfadoxine-pyrimethamine (SP, single dose) versus AS monotherapy (5 days) in Southern Mali. Uncomplicated malaria cases were followed for 28 days. Molecular markers of drug resistance were determined.
View Article and Find Full Text PDF