This paper is likely the first attempt to empirically investigate the direct effect of geopolitical risk on sustainable development goals (SDGs). We employ a newly developed SDG index along with its 17 sub-indices from the United Nations to capture various aspects of sustainable development. On a panel sample covering 41 countries from 2015 to 2021, we find that elevated geopolitical tensions can hinder the progress towards achieving sustainable development goals.
View Article and Find Full Text PDFDual-drug delivery systems for anticancer therapy have recently attracted substantial attention due to their potency to overcome limitations of conventional anti-cancer drugs, tackle drug resistance problems, as well as improve the therapeutic efficacy. In this study, we introduced a novel nanogel based on folic acid-gelatin-pluronic P123 (FA-GP-P123) conjugate to simultaneously deliver quercetin (QU) and paclitaxel (PTX) to the targeted tumor. The results indicated that the drug loading capacity of FA-GP-P123 nanogels was significantly higher than that of P123 micelles.
View Article and Find Full Text PDFIntroduction: Multi-drug nanosystem has been employed in several therapeutic models due to the synergistic effect of the drugs and/or bioactive compounds, which help in tumor targeting and limit the usual side effects of chemotherapy.
Methods: In this research, we developed the amphiphilic Heparin-poloxamer P403 (HSP) nanogel that could load curcumin (CUR) and Paclitaxel (PTX) through the hydrophobic core of Poloxamer P403. The features of HSP nanogel were assessed through Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), differential light scattering (DLS), and critical micelle concentration (CMC).
Nanosized multi-drug delivery systems provide synergistic effects between drugs and bioactive compounds, resulting in increased overall efficiency and restricted side effects compared to conventional single-drug chemotherapy. In this study, we develop an amphiphilic heparin-poloxamer P403 (HP403) nanogel that could effectively co-load curcuminoid (Cur) and cisplatin hydrate (CisOH) (HP403@CisOH@Cur) via two loading mechanisms. The HP403 nanogels and HP403@CisOH@Cur nanogels were closely analyzed with H-NMR spectroscopy, FT-IR spectroscopy, TEM, and DLS, exhibiting high stability in spherical forms.
View Article and Find Full Text PDFIn this study, we investigated two formulations of chitosan-Pluronic P123 with different folate ligand designation for targeted delivery of Paclitaxel (PTX), in which folic acid (FA) was directly conjugated to chitosan (FA-Cs-P123) or substituted onto P123 (Cs-P123-FA). The results showed that the FA content of Cs-P123-FA was determined at 0.71 wt/wt% which was significantly higher than that of FA-Cs-P123 (0.
View Article and Find Full Text PDFThis paper presents a new thermal sensitive hydrogel system based on cystamine-functionalised sodium alginate-g-pluronic F127 (ACP). The introduction of cystamine to the alginate backbone not only creates a covalent bond with pluronic F127 but also provides intrinsic anti-bacterial activity for the resultant hydrogel. The amount of water uptake inside the hydrogel remained ~200% for 6 days and the degradation was completed in 12 days in physiological media.
View Article and Find Full Text PDFInt J Biol Macromol
April 2021
Hematin has been used as an alternative enzyme catalyst to horseradish peroxidase (HRP) due to its iron-containing activity center. Although hematin and it derivatives have been widely used for polymerization of phenol/analine compounds, it has some drawbacks such as the limited solubility and reaction only at high pH condition. Herein, we report a nanosized biomimetic catalyst, hematin-decorated polyamidoamine dendrimer (G3.
View Article and Find Full Text PDFHerein, a new process to manufacture multicore micelles nanoparticles reinforced with co-assembly via hydrophobic interaction and electrostatic interaction under the help of ultrasonication was developed. The precise co-assembly between negative/hydrophobic drug and positive charged amphiphilic copolymer based pluronic platform allows the formation of complex micelles structures as the multicore motif with predefined functions. In this study, curcumin was selected as a drug model while positively charged copolymer was based on a pluronic-conjugated gelatin with different hydrophobicity length of Pluronic F87 and Pluronic F127.
View Article and Find Full Text PDF