Climate change and increasing urbanization are two primary factors responsible for the increased risk of serious flooding around the world. The prediction and monitoring of the effects of land use/land cover (LULC) and climate change on flood risk are critical steps in the development of appropriate strategies to reduce potential damage. This study aimed to develop a new approach by combining machine learning (namely the XGBoost, CatBoost, LightGBM, and ExtraTree models) and hydraulic modeling to predict the effects of climate change and LULC change on land that is at risk of flooding.
View Article and Find Full Text PDFSoil salinization is considered one of the disasters that have significant effects on agricultural activities in many parts of the world, particularly in the context of climate change and sea level rise. This problem has become increasingly essential and severe in the Mekong River Delta of Vietnam. Therefore, soil salinity monitoring and assessment are critical to building appropriate strategies to develop agricultural activities.
View Article and Find Full Text PDF